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C H A P T E R 5

Series Solutions of ODEs.
Special Functions

In the previous chapters, we have seen that linear ODEs with constant coefficients can be
solved by algebraic methods, and that their solutions are elementary functions known from
calculus. For ODEs with variable coefficients the situation is more complicated, and their
solutions may be nonelementary functions. Legendre’s, Bessel’s, and the hypergeometric
equations are important ODEs of this kind. Since these ODEs and their solutions, the
Legendre polynomials, Bessel functions, and hypergeometric functions, play an important
role in engineering modeling, we shall consider the two standard methods for solving
such ODEs.

The first method is called the power series method because it gives solutions in the
form of a power series .

The second method is called the Frobenius method and generalizes the first; it gives
solutions in power series, multiplied by a logarithmic term or a fractional power ,
in cases such as Bessel’s equation, in which the first method is not general enough.

All those more advanced solutions and various other functions not appearing in calculus
are known as higher functions or special functions, which has become a technical term.
Each of these functions is important enough to give it a name and investigate its properties
and relations to other functions in great detail (take a look into Refs. [GenRef1],
[GenRef10], or [All] in App. 1). Your CAS knows practically all functions you will ever
need in industry or research labs, but it is up to you to find your way through this vast
terrain of formulas. The present chapter may give you some help in this task.

COMMENT. You can study this chapter directly after Chap. 2 because it needs no
material from Chaps. 3 or 4.

Prerequisite: Chap. 2.
Section that may be omitted in a shorter course: 5.5.
References and Answers to Problems: App. 1 Part A, and App. 2.

5.1 Power Series Method
The power series method is the standard method for solving linear ODEs with variable
coefficients. It gives solutions in the form of power series. These series can be used
for computing values, graphing curves, proving formulas, and exploring properties of
solutions, as we shall see. In this section we begin by explaining the idea of the power
series method.

x rln x

a0 � a1x � a2 x2 � a3 x3 � Á
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168 CHAP. 5 Series Solutions of ODEs. Special Functions

From calculus we remember that a power series (in powers of ) is an infinite
series of the form

(1)

Here, x is a variable. are constants, called the coefficients of the series. 
is a constant, called the center of the series. In particular, if , we obtain a power

series in powers of x

(2)

We shall assume that all variables and constants are real.
We note that the term “power series” usually refers to a series of the form (1) [or (2)]

but does not include series of negative or fractional powers of x. We use m as the
summation letter, reserving n as a standard notation in the Legendre and Bessel equations
for integer values of the parameter.

E X A M P L E  1 Familiar Power Series are the Maclaurin series

Idea and Technique of the Power Series Method
The idea of the power series method for solving linear ODEs seems natural, once we
know that the most important ODEs in applied mathematics have solutions of this form.
We explain the idea by an ODE that can readily be solved otherwise.

E X A M P L E  2 Power Series Solution. Solve .

Solution. In the first step we insert

(2) y � a0 � a1x � a2 x2 � a3 x3 � Á � a
�

m�0

 am xm

yr � y � 0

� sin x � a
�

m�0

 
(�1)mx2m�1

(2m � 1)!
� x �

x3

3!
�

x5

5!
� � Á .

 cos x � a
�

m�0

 
(�1)mx2m

(2m)!
� 1 �

x2

2!
�

x4

4!
� � Á

 ex � a
�

m�0

 
xm

m!
� 1 � x �

x2

2!
�

x3

3!
� Á

 
1

1 � x
� a

�

m�0

 xm � 1 � x � x2 � Á  
 

( ƒ x ƒ � 1, geometric series)

a
�

m�0

 am x
m � a0 � a1x � a2 x2 � a3 x3 � Á .

x0 � 0x0

a0, a1, a2, Á

a
�

m�0

 am(x � x0)m � a0 � a1(x � x0) � a2(x � x0)2 � Á .

x � x0
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SEC. 5.1 Power Series Method 169

and the series obtained by termwise differentiation

(3)

into the ODE:

Then we collect like powers of x, finding

Equating the coefficient of each power of x to zero, we have

Solving these equations, we may express in terms of , which remains arbitrary:

With these values of the coefficients, the series solution becomes the familiar general solution

Test your comprehension by solving by power series. You should get the result

We now describe the method in general and justify it after the next example. For a given
ODE

(4)

we first represent p(x) and q(x) by power series in powers of x (or of if solutions
in powers of are wanted). Often p(x) and q(x) are polynomials, and then nothing
needs to be done in this first step. Next we assume a solution in the form of a power series
(2) with unknown coefficients and insert it as well as (3) and

(5)

into the ODE. Then we collect like powers of x and equate the sum of the coefficients of
each occurring power of x to zero, starting with the constant terms, then taking the terms
containing x, then the terms in , and so on. This gives equations from which we can
determine the unknown coefficients of (3) successively.

E X A M P L E  3 A Special Legendre Equation. The ODE

occurs in models exhibiting spherical symmetry. Solve it.

(1 � x2)ys � 2xyr � 2y � 0

x2

ys � 2a2 � 3 # 2a3 x � 4 # 3a4 x
2 � Á � a

�

m�2

 m(m � 1)am xm�2

x � x0

x � x0

ys � p(x)yr � q(x)y � 0

�y � a0 cos x � a1 sin x.
ys � y � 0

y � a0 � a0 x �
a0

2!
 x2 �

a0

3!
 x3 � Á � a0 a1 � x �

x2

2!
�

x3

3!
b � a0ex.

a1 � a0,  a2 �
a1

2
�

a0

2!
 ,  a3 �

a2

3
�

a0

3!
 , Á .

a0a1, a2, Á

a1 � a0 � 0,  2a2 � a1 � 0,  3a3 � a2 � 0, Á .

(a1 � a0) � (2a2 � a1)x � (3a3 � a2)x2 � Á � 0.

(a1 � 2a2 x � 3a3 x2 � Á ) � (a0 � a1x � a2 x2 � Á ) � 0.

yr � a1 � 2a2 x � 3a3 x2 � Á � a
�

m�1

 mam xm�1
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170 CHAP. 5 Series Solutions of ODEs. Special Functions

Solution. Substitute (2), (3), and (5) into the ODE. gives two series, one for and one for
In the term use (3) and in 2y use (2). Write like powers of x vertically aligned. This gives

Add terms of like powers of x. For each power equate the sum obtained to zero. Denote these sums
by (constant terms), (first power of x), and so on:

Sum Power Equations

This gives the solution

and remain arbitrary. Hence, this is a general solution that consists of two solutions: x and
. These two solutions are members of families of functions called Legendre polynomials

and Legendre functions ; here we have and . The
minus is by convention. The index 1 is called the order of these two functions and here the order is 1. More on
Legendre polynomials in the next section.

Theory of the Power Series Method
The nth partial sum of (1) is

(6)

where If we omit the terms of from (1), the remaining expression is

(7)

This expression is called the remainder of (1) after the term .
For example, in the case of the geometric series

we have

s0 � 1,  R0 � x � x2 � x3 � Á ,

s1 � 1 � x,  R1 � x2 � x3 � x4 � Á ,

s2 � 1 � x � x2,  R2 � x3 � x4 � x5 � Á ,  etc.

1 � x � x2 � Á � xn � Á

an(x � x0)n

Rn(x) � an�1(x � x0)n�1 � an�2(x � x0)n�2 � Á .

snn � 0, 1, Á .

sn(x) � a0 � a1(x � x0) � a2(x � x0)2 � Á � an(x � x0)n

�

1 � x2 � 1
3 x4 � 1

5 x6 � Á � �Q1(x)x � P1(x)Qn(x)Pn(x)
1 � x2 � 1

3 x4 � 1
5 x6 � Á

a1a0

y � a1x � a0(1 � x2 � 1
3 x4 � 1

5 x6 � Á ).

30a6 � 18a4,   a6 � 18
30 a4 � 18

30 (�1
3)a0 � �1

5 a0.[x4][4]

a5 � 0    since  a3 � 0[x3][3]

12a4 � 4a2,  a4 � 4
12  

a2 � �1
3  

a0[x2][2]

a3 � 0[x][1]

a2 � �a0[x0][0]

[1][0]
x0, x, x2, Á

 2y � 2a0 � 2a1x � 2a2x2 � 2a3 x3 � 2a4 x
4 � Á .

 �2xyr � � 2a1x � 4a2 x2 � 6a3 x3 � 8a4 x
4 � Á

 �x2ys � � 2a2 x2 � 6a3 x3 � 12a4 x
4 � Á

 ys � 2a2 � 6a3 x � 12a4 x
2 � 20a5 x

3 � 30a6 x
4 � Á

�2xyr�x2ys.
ys(1 � x2)ys

c05.qxd  10/28/10  1:33 PM  Page 170

jjw5277
文字方塊
以下原理複變都教過。



SEC. 5.1 Power Series Method 171

In this way we have now associated with (1) the sequence of the partial sums
. If for some this sequence converges, say,

then the series (1) is called convergent at , the number is called the value
or sum of (1) at , and we write

Then we have for every n,

(8)

If that sequence diverges at , the series (1) is called divergent at .
In the case of convergence, for any positive there is an N (depending on ) such that,

by (8)

(9)

Geometrically, this means that all with lie between and 
(Fig. 104). Practically, this means that in the case of convergence we can approximate the
sum of (1) at by as accurately as we please, by taking n large enough.sn(x1)x1s(x1)

s(x1) � Ps(x1) � Pn � Nsn(x1)

for all n � N.ƒ Rn(x1) ƒ � ƒ s(x1) � sn(x1) ƒ � P

PP

x � x1x � x1

s(x1) � sn(x1) � Rn(x1).

s(x1) � a
�

m�0

 am(x1 � x0)m.

x1

s(x1)x � x1

lim
n:�  

sn(x1) � s(x1),

x � x1s0(x), s1(x), s2(x), Á

∈ ∈

s(x
1
) – ε s(x

1
)∈ s(x

1
) + ε∈

Fig. 104. Inequality (9)

R R

x
0 

– R x
0

x
0
 + R

ConvergenceDivergence Divergence

Fig. 105. Convergence interval (10) of a power series with center x0

Where does a power series converge? Now if we choose in (1), the series reduces
to the single term because the other terms are zero. Hence the series converges at .
In some cases this may be the only value of x for which (1) converges. If there are other
values of x for which the series converges, these values form an interval, the convergence
interval. This interval may be finite, as in Fig. 105, with midpoint . Then the series (1)
converges for all x in the interior of the interval, that is, for all x for which

(10)

and diverges for . The interval may also be infinite, that is, the series may
converge for all x.

ƒ x � x0 ƒ � R

ƒ x � x0 ƒ � R

x0

x0a0

x � x0
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172 CHAP. 5 Series Solutions of ODEs. Special Functions

The quantity R in Fig. 105 is called the radius of convergence (because for a complex
power series it is the radius of disk of convergence). If the series converges for all x, we
set (and ).

The radius of convergence can be determined from the coefficients of the series by
means of each of the formulas

(11)

provided these limits exist and are not zero. [If these limits are infinite, then (1) converges
only at the center .]

E X A M P L E  4 Convergence Radius , 1, 0

For all three series let 

Convergence for all is the best possible case, convergence in some finite interval the usual, and
convergence only at the center is useless.

When do power series solutions exist? Answer: if p, q, r in the ODEs

(12)

have power series representations (Taylor series). More precisely, a function is called
analytic at a point if it can be represented by a power series in powers of 
with positive radius of convergence. Using this concept, we can state the following basic
theorem, in which the ODE (12) is in standard form, that is, it begins with the If
your ODE begins with, say, , divide it first by and then apply the theorem to
the resulting new ODE.

T H E O R E M  1 Existence of Power Series Solutions

If p, q, and r in (12) are analytic at then every solution of (12) is analytic
at and can thus be represented by a power series in powers of with
radius of convergence .

The proof of this theorem requires advanced complex analysis and can be found in Ref.
[A11] listed in App. 1.

We mention that the radius of convergence R in Theorem 1 is at least equal to the distance
from the point to the point (or points) closest to at which one of the functions
p, q, r, as functions of a complex variable, is not analytic. (Note that that point may not
lie on the x-axis but somewhere in the complex plane.)

x0x � x0

R � 0
x � x0x � x0

x � x0,

h(x)h(x)ys
ys.

x � x0x � x0

f (x)

ys � p(x)yr � q(x)y � r(x)

�(R � 0)
x (R � �)

 a
�

m�0

 m!xm � 1 � x � 2x2 � Á ,  ` am�1

am
` �

(m � 1)!

m!
� m � 1 : �,   R � 0.

 
1

1 � x
� a

�

m�0

 xm � 1 � x � x2 � Á ,  ` am�1

am

` �
1

1
� 1,  R � 1

 ex � a
�

m�0

 
xm

m!
� 1 � x �

x2

2!
� Á ,   ` am�1

am
` �

1>(m � 1)!

1>m!
�

1

m � 1
 :  0,   R � �

m : �

R � �

x0

^ lim
m:�

 ` am�1

am
`^ lim

m:�
2
m

ƒ am ƒ  (b) R � 1(a) R � 1

1>R � 0R � �
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SEC. 5.1 Power Series Method 173

Further Theory: Operations on Power Series
In the power series method we differentiate, add, and multiply power series, and we obtain
coefficient recursions (as, for instance, in Example 3) by equating the sum of the
coefficients of each occurring power of x to zero. These four operations are permissible
in the sense explained in what follows. Proofs can be found in Sec. 15.3.

1. Termwise Differentiation. A power series may be differentiated term by term. More
precisely: if

converges for , where , then the series obtained by differentiating term
by term also converges for those x and represents the derivative of y for those x:

Similarly for the second and further derivatives.

2. Termwise Addition. Two power series may be added term by term. More precisely:
if the series

(13)

have positive radii of convergence and their sums are and g(x), then the series

converges and represents for each x that lies in the interior of the convergence
interval common to each of the two given series.

3. Termwise Multiplication. Two power series may be multiplied term by term. More
precisely: Suppose that the series (13) have positive radii of convergence and let and
g(x) be their sums. Then the series obtained by multiplying each term of the first series
by each term of the second series and collecting like powers of , that is,

converges and represents for each x in the interior of the convergence interval of
each of the two given series.

f (x)g(x)

� a
�

m�0

 (a0bm � a1bm�1 � Á � amb0)(x � x0)m

a0b0 � (a0b1 � a1b0)(x � x0) � (a0b2 � a1b1 � a2b0)(x � x0)2 � Á

x � x0

f (x)

f (x) � g(x)

a
�

m�0

 (am � bm)(x � x0)m

f (x)

a
�

m�0

 am(x � x0)m  and  a
�

m�0

 bm(x � x0)m

( ƒ x � x0 ƒ � R).yr(x) � a
�

m�1

 mam(x � x0)m�1

yr
R � 0ƒ x � x0 ƒ � R

y(x) � a
�

m�0

 am(x � x0)m
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174 CHAP. 5 Series Solutions of ODEs. Special Functions

4. Vanishing of All Coefficients (“Identity Theorem for Power Series.”) If a power
series has a positive radius of convergent convergence and a sum that is identically zero
throughout its interval of convergence, then each coefficient of the series must be zero.

1. WRITING AND LITERATURE PROJECT. Power
Series in Calculus. (a) Write a review (2–3 pages) on
power series in calculus. Use your own formulations and
examples—do not just copy from textbooks. No proofs.
(b) Collect and arrange Maclaurin series in a systematic
list that you can use for your work.

2–5 REVIEW: RADIUS OF CONVERGENCE
Determine the radius of convergence. Show the details of
your work.

2.

3.

4.

5.

6–9 SERIES SOLUTIONS BY HAND
Apply the power series method. Do this by hand, not by a
CAS, to get a feel for the method, e.g., why a series may
terminate, or has even powers only, etc. Show the details.

6.

7.

8.

9.

10–14 SERIES SOLUTIONS
Find a power series solution in powers of x. Show the details.

10.

11.

12.

13.

14. ys � 4xyr � (4x2 � 2)y � 0

ys � (1 � x2)y � 0

(1 � x2)ys � 2xyr � 2y � 0

ys � yr � x2y � 0

ys � yr � xy � 0

ys � y � 0

xyr � 3y � k (� const)

yr � �2xy

(1 � x)yr � y

a
�

m�0

 a2
3
b

m

x2m

a
�

m�0

 
x2m�1

(2m � 1)!

a
�

m�0

 
(�1)m

km  x2m

a
�

m�0

 (m � 1)mxm

15. Shifting summation indices is often convenient or
necessary in the power series method. Shift the index
so that the power under the summation sign is .
Check by writing the first few terms explicity.

16–19 CAS PROBLEMS. IVPs
Solve the initial value problem by a power series. Graph
the partial sums of the powers up to and including . Find
the value of the sum s (5 digits) at .

16.

17.

18.

19.

20. CAS Experiment. Information from Graphs of
Partial Sums. In numerics we use partial sums of
power series. To get a feel for the accuracy for various
x, experiment with . Graph partial sums of the
Maclaurin series of an increasing number of terms,
describing qualitatively the “breakaway points” of
these graphs from the graph of . Consider other
Maclaurin series of your choice.

sin x

sin x

(x � 2)yr � xy, y(0) � 4, x1 � 2

x1 � 0.5yr(0) � 1.875,
y(0) � 0,(1 � x2)ys � 2xyr � 30y � 0,

x � 0.5
yr(0) � 1,y(0) � 1,ys � 3xyr � 2y � 0,

yr � 4y � 1, y(0) � 1.25, x1 � 0.2

x1

x5

a
�

s�2

s(s � 1)

s2 � 1
 xs�1,  a

�

p�1

p2

( p � 1)!
 xp�4

xm

P R O B L E M  S E T  5 . 1

–0.5

0.5

0

1

1.5

1 2 3 4 5 6

–1

–1.5

x

Fig. 106. CAS Experiment 20. and partial 
sums s3, s5, s7

sin x
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SEC. 5.2 Legendre’s Equation. Legendre Polynomials 175Pn(x)

5.2 Legendre’s Equation. 
Legendre Polynomials 

Legendre’s differential equation1

(1) (n constant)

is one of the most important ODEs in physics. It arises in numerous problems, particularly
in boundary value problems for spheres (take a quick look at Example 1 in Sec. 12.10).

The equation involves a parameter n, whose value depends on the physical or
engineering problem. So (1) is actually a whole family of ODEs. For we solved it
in Example 3 of Sec. 5.1 (look back at it). Any solution of (1) is called a Legendre function.
The study of these and other “higher” functions not occurring in calculus is called the
theory of special functions. Further special functions will occur in the next sections.

Dividing (1) by , we obtain the standard form needed in Theorem 1 of Sec. 5.1
and we see that the coefficients and of the new equation
are analytic at , so that we may apply the power series method. Substituting

(2)

and its derivatives into (1), and denoting the constant simply by k, we obtain

.

By writing the first expression as two separate series we have the equation

It may help you to write out the first few terms of each series explicitly, as in Example 3
of Sec. 5.1; or you may continue as follows. To obtain the same general power in all
four series, set (thus ) in the first series and simply write s instead
of m in the other three series. This gives

.a
�

s�0

 (s � 2)(s � 1)as�2 x
s � a

�

s�2

 s(s � 1)as x
s � a

�

s�1

 2sas x
s � a

�

s�0

 kas x
s � 0

m � s � 2m � 2 � s
xs

a
�

m�2

 m(m � 1)am xm�2 � a
�

m�2

 m(m � 1)am xm � a
�

m�1

 2mam xm � a
�

m�0

 kam xm � 0.

(1 � x2) a
�

m�2

m(m � 1)am xm�2 � 2x a
�

m�1

mam xm�1 � k a
�

m�0

am xm � 0

n(n � 1)

y � a
�

m�0

am xm

x � 0
n(n � 1)>(1 � x2)�2x>(1 � x2)

1 � x2

n � 1

(1 � x2)ys � 2xyr � n(n � 1)y � 0

Pn(x)

1ADRIEN-MARIE LEGENDRE (1752–1833), French mathematician, who became a professor in Paris in
1775 and made important contributions to special functions, elliptic integrals, number theory, and the calculus
of variations. His book Éléments de géométrie (1794) became very famous and had 12 editions in less than
30 years.

Formulas on Legendre functions may be found in Refs. [GenRef1] and [GenRef10].
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176 CHAP. 5 Series Solutions of ODEs. Special Functions

(Note that in the first series the summation begins with .) Since this equation with
the right side 0 must be an identity in x if (2) is to be a solution of (1), the sum of the
coefficients of each power of x on the left must be zero. Now occurs in the first and
fourth series only, and gives [remember that ]

(3a) .

occurs in the first, third, and fourth series and gives

(3b) .

The higher powers occur in all four series and give

(3c)

The expression in the brackets can be written , as you may
readily verify. Solving (3a) for and (3b) for as well as (3c) for , we obtain the
general formula

(4) .

This is called a recurrence relation or recursion formula. (Its derivation you may verify
with your CAS.) It gives each coefficient in terms of the second one preceding it, except
for and , which are left as arbitrary constants. We find successively

and so on. By inserting these expressions for the coefficients into (2) we obtain

(5)

where

(6)

(7)  y2(x) � x �
(n � 1)(n � 2)

3!
 x3 �

(n � 3)(n � 1)(n � 2)(n � 4)

5!
 x5 � � Á .

 y1(x) � 1 �
n(n � 1)

2!
 x2 �

(n � 2)n(n � 1)(n � 3)

4!
 x4 � � Á

y(x) � a0y1(x) � a1y2(x)

  �
(n � 3)(n � 1)(n � 2)(n � 4)

5!
 a1  �

(n � 2)n(n � 1)(n � 3)

4!
 a0

 a5 � � 

(n � 3)(n � 4)

5 # 4
 a3 a4 � � 

(n � 2)(n � 3)

4 # 3
 a2

 a3 � � 

(n � 1)(n � 2)

3!
 a1 a2 � � 

n(n � 1)

2!
 a0

a1a0

(s � 0, 1, Á )as�2 � � 

(n � s)(n � s � 1)

(s � 2)(s � 1)
 as

as�2a3a2

(n � s)(n � s � 1)[ Á ]

(s � 2)(s � 1)as�2 � [�s(s � 1) � 2s � n(n � 1)]as � 0.

x2, x3, Á

3 # 2a3 � [�2 � n(n � 1)]a1 � 0

x1

2 # 1a2 � n(n � 1)a0 � 0

k � n(n � 1)
x0

s � 0
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These series converge for (see Prob. 4; or they may terminate, see below). Since
(6) contains even powers of x only, while (7) contains odd powers of x only, the ratio

is not a constant, so that and are not proportional and are thus linearly
independent solutions. Hence (5) is a general solution of (1) on the interval 

Note that are the points at which , so that the coefficients of the
standardized ODE are no longer analytic. So it should not surprise you that we do not get
a longer convergence interval of (6) and (7), unless these series terminate after finitely
many powers. In that case, the series become polynomials.

Polynomial Solutions. Legendre Polynomials 
The reduction of power series to polynomials is a great advantage because then we have
solutions for all x, without convergence restrictions. For special functions arising as
solutions of ODEs this happens quite frequently, leading to various important families of
polynomials; see Refs. [GenRef1], [GenRef10] in App. 1. For Legendre’s equation this
happens when the parameter n is a nonnegative integer because then the right side of (4)
is zero for , so that . Hence if n is even, 
reduces to a polynomial of degree n. If n is odd, the same is true for . These
polynomials, multiplied by some constants, are called Legendre polynomials and are
denoted by . The standard choice of such constants is done as follows. We choose
the coefficient of the highest power as

(8) (n a positive integer)

(and ). Then we calculate the other coefficients from (4), solved for in
terms of , that is,

(9)

The choice (8) makes for every n (see Fig. 107); this motivates (8). From (9)
with and (8) we obtain

Using in the numerator and and
in the denominator, we obtain

cancels, so that we get

an�2 � � 

(2n � 2)!

2n(n � 1)! (n � 2)!
 .

n(n � 1)2n(2n � 1)

an�2 � � 

n(n � 1)2n(2n � 1)(2n � 2)!

2(2n � 1)2nn(n � 1)! n(n � 1)(n � 2)!
 .

n! � n(n � 1)(n � 2)!
n! � n(n � 1)!(2n)! � 2n(2n � 1)(2n � 2)!

an�2 � � 

n(n � 1)

2(2n � 1)
 an � � 

n(n � 1)

2(2n � 1)
#

(2n)!

2n(n!)2

s � n � 2
pn(1) � 1

(s � n � 2).as � � 

(s � 2)(s � 1)

(n � s)(n � s � 1)
 as�2

as�2

asan � 1 if n � 0

an �
(2n)!

2n(n!)2 �
1 # 3 # 5 Á (2n � 1)

n!

xnan

Pn(x)

y2(x)
y1(x)an�2 � 0, an�4 � 0, an�6 � 0, Ás � n

Pn(x)

1 � x2 � 0x � 	1
�1 � x � 1.

y2y1y1>y2

ƒ x ƒ � 1
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Similarly,

and so on, and in general, when ,

(10)

The resulting solution of Legendre’s differential equation (1) is called the Legendre
polynomial of degree n and is denoted by .

From (10) we obtain

(11)

where , whichever is an integer. The first few of these functions
are (Fig. 107)

and so on. You may now program (11) on your CAS and calculate as needed.Pn(x)

P0(x) � 1,     P1(x) � x

P2(x) � 1
2 (3x2 � 1),  P3(x) � 1

2 (5x3 � 3x)

P4(x) � 1
8 (35x4 � 30x2 � 3),  P5(x) � 1

8 (63x5 � 70x3 � 15x)

(11�)

M � n>2 or (n � 1)>2

 �
(2n)!

2n(n!)2
 xn �

(2n � 2)!

2n1! (n � 1)! (n � 2)!
xn�2 � � Á

 Pn(x) � a

M

m�0

 (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 xn�2m

Pn(x)

an�2m � (�1)m 
(2n � 2m)!

2nm! (n � m)! (n � 2m)!
 .

n � 2m 
 0

 �
(2n � 4)!

2n2! (n � 2)! (n � 4)!

 an�4 � � 

(n � 2)(n � 3)

4(2n � 3)
 an�2

–1

–1 x

Pn(x) P0

P1

P4

P3

P2

1

1

Fig. 107. Legendre polynomials
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The Legendre polynomials are orthogonal on the interval , a basic
property to be defined and used in making up “Fourier–Legendre series” in the chapter
on Fourier series (see Secs. 11.5–11.6).

�1 � x � 1Pn(x)

1–5 LEGENDRE POLYNOMIALS AND
FUNCTIONS

1. Legendre functions for Show that (6) with
gives and (7) gives (use 

)

Verify this by solving (1) with , setting 
and separating variables.

2. Legendre functions for Show that (7) with
gives and (6) gives

3. Special n. Derive from (11).

4. Legendre’s ODE. Verify that the polynomials in 
satisfy (1).

5. Obtain and .

6–9 CAS PROBLEMS
6. Graph on common axes. For what x

(approximately) and is ?

7. From what n on will your CAS no longer produce
faithful graphs of ? Why?

8. Graph , and some further Legendre
functions.

9. Substitute into Legen-
dre’s equation and obtain the coefficient recursion (4).

10. TEAM PROJECT. Generating Functions. Generating
functions play a significant role in modern applied
mathematics (see [GenRef5]). The idea is simple. If we
want to study a certain sequence and can find a
function

,

we may obtain properties of from those of G,
which “generates” this sequence and is called a
generating function of the sequence.

(  fn(x))

G(u, x) � a
�

n�0

 fn(x)un

(  fn(x))

asx
s � as�1x s�1 � as�2x s�2

Q0(x), Q1(x)

Pn(x)

ƒ Pn(x) ƒ � 1
2n � 2, Á , 10

P2(x), Á , P10(x)

P7P6

(11r)
(11r)

� 1 �
1
2

 x ln 
1 � x
1 � x

 .

y1 � 1 � x2 �
1
3

 x4 �
1
5

 x6 � Á

y2(x) � P1(x) � xn � 1
n � 1.

z � yrn � 0

y2(x) � x �
1
3

 x3 �
1
5

 x5 � Á �
1
2

 ln 
1 � x
1 � x

 .

x � 1
2 x2 � 1

3 x3 � Á

ln (1 � x) �P0(x) � 1n � 0
n � 0.

(a) Legendre polynomials. Show that

(12)

is a generating function of the Legendre polynomials.
Hint: Start from the binomial expansion of 
then set , multiply the powers of 
out, collect all the terms involving , and verify that
the sum of these terms is .

(b) Potential theory. Let and be two points in
space (Fig. 108, ). Using (12), show that

This formula has applications in potential theory. (
is the electrostatic potential at due to a charge Q
located at . And the series expresses in terms of
the distances of and from any origin O and the
angle between the segments and .)OA2OA1u

A2A1

1>rA1

A2

Q>r

 �
1
r2 a

�

m�0

Pm(cos u) ar1

r2
b

m

.

 
1
r �

1

2r1
2 � r2

2 � 2r1r2 cos u

r2 � 0
A2A1

Pn(x)un
un

2xu � u2v � 2xu � u2
1>11 � v,

G(u, x) �
1

21 � 2xu � u2
� a

�

n�0

 Pn(x)un

P R O B L E M  S E T  5 . 2

r
2

r

A
2

θ
A

1r
1

0

Fig. 108. Team Project 10

(c) Further applications of (12). Show that
, and

.

11–15 FURTHER FORMULAS
11. ODE. Find a solution of 

, by reduction to the Legendre
equation.

12. Rodrigues’s formula (13)2 Applying the binomial
theorem to , differentiating it n times term
by term, and comparing the result with (11), show that

(13) Pn(x) �
1

2nn!
  

dn

dxn [(x2 � 1)n].

(x2 � 1) n

a � 0n(n � 1)y � 0,
(a2 � x2)ys � 2xyr �

P2n(0) � (�1) n # 1 # 3 Á (2n � 1)>[2 # 4 Á (2n)]
Pn(1) � 1, Pn(�1) � (�1) n, P2n�1(0) � 0

2OLINDE RODRIGUES (1794–1851), French mathematician and economist.
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