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CHAPTER 8

Linear Algebra:
Matrix Eigenvalue Problems

A matrix eigenvalue problem considers the vector equation
(D Ax = Ax.

Here A is a given square matrix, A an unknown scalar, and X an unknown vector. In a
matrix eigenvalue problem, the task is to determine A’s and x’s that satisfy (1). Since
x = 0 is always a solution for any A and thus not interesting, we only admit solutions
with x # 0.

The solutions to (1) are given the following names: The A’s that satisfy (1) are called
eigenvalues of A and the corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.

From this rather innocent looking vector equation flows an amazing amount of relevant
theory and an incredible richness of applications. Indeed, eigenvalue problems come up
all the time in engineering, physics, geometry, numerics, theoretical mathematics, biology,
environmental science, urban planning, economics, psychology, and other areas. Thus, in
your career you are likely to encounter eigenvalue problems.

We start with a basic and thorough introduction to eigenvalue problems in Sec. 8.1 and
explain (1) with several simple matrices. This is followed by a section devoted entirely
to applications ranging from mass—spring systems of physics to population control models
of environmental science. We show you these diverse examples to train your skills in
modeling and solving eigenvalue problems. Eigenvalue problems for real symmetric,
skew-symmetric, and orthogonal matrices are discussed in Sec. 8.3 and their complex
counterparts (which are important in modern physics) in Sec. 8.5. In Sec. 8.4 we show
how by diagonalizing a matrix, we obtain its eigenvalues.

COMMENT. Numerics for eigenvalues (Secs. 20.6-20.9) can be studied immediately
after this chapter.

Prerequisite: Chap. 7.
Sections that may be omitted in a shorter course: 8.4, 8.5.
References and Answers to Problems: App. 1 Part B, App. 2.
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The following chart identifies where different types of eigenvalue problems appear in the
book.

Topic Where to find it
Matrix Eigenvalue Problem (algebraic eigenvalue problem) Chap. 8
Eigenvalue Problems in Numerics Secs. 20.6-20.9
Eigenvalue Problem for ODEs (Sturm-Liouville problems) Secs. 11.5, 11.6
Eigenvalue Problems for Systems of ODEs Chap. 4
Eigenvalue Problems for PDEs Secs. 12.3-12.11

8.1 The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

4.00 00
eigenvalue, eigenvector

Consider multiplying nonzero vectors by a given square matrix, such as

6 315 33 6 3|3 30

4 711 27| 4 714 40|

We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector [30 401" = 10[3 4]", which means the new vector has the same direction as
the original vector. The scale constant, which we denote by A is 10. The problem of
systematically finding such A\’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.

We formalize our observation. Let A = [aj;] be a given nonzero square matrix of
dimension n X n. Consider the following vector equation:

@ Ax = Ax.

The problem of finding nonzero x’s and A’s that satisfy equation (1) is called an eigenvalue
problem.

Remark. So A is a given square (!) matrix, x is an unknown vector, and A is an
unknown scalar. Our task is to find A’s and nonzero x’s that satisfy (1). Geometrically,
we are looking for vectors, x, for which the multiplication by A has the same effect as
the multiplication by a scalar A; in other words, Ax should be proportional to x. Thus,
the multiplication has the effect of producing, from the original vector x, a new vector
Ax that has the same or opposite (minus sign) direction as the original vector. (This was
all demonstrated in our intuitive opening example. Can you see that the second equation in
that example satisfies (1) with A = 10 and x = [3 4]T, and A the given 2 X 2 matrix?
Write it out.) Now why do we require X to be nonzero? The reason is that x = 0 is
always a solution of (1) for any value of A, because AQ = 0. This is of no interest.
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EXAMPLE 1

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

We introduce more terminology. A value of A, for which (1) has a solution x # 0, is
called an eigenvalue or characteristic value of the matrix A. Another term for A is a latent
root. (“Eigen” is German and means “proper” or “characteristic.”’). The corresponding
solutions x # 0 of (1) are called the eigenvectors or characteristic vectors of A
corresponding to that eigenvalue A. The set of all the eigenvalues of A is called the
spectrum of A. We shall see that the spectrum consists of at least one eigenvalue and at
most of n numerically different eigenvalues. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A, a name to be motivated later.

How to Find Eigenvalues and Eigenvectors

Now, with the new terminology for (1), we can just say that the problem of determining
the eigenvalues and eigenvectors of a matrix is called an eigenvalue problem. (However,
more precisely, we are considering an algebraic eigenvalue problem, as opposed to an
eigenvalue problem involving an ODE or PDE, as considered in Secs. 11.5 and 12.3, or
an integral equation.)

Eigenvalues have a very large number of applications in diverse fields such as in
engineering, geometry, physics, mathematics, biology, environmental science, economics,
psychology, and other areas. You will encounter applications for elastic membranes,
Markov processes, population models, and others in this chapter.

Since, from the viewpoint of engineering applications, eigenvalue problems are the most
important problems in connection with matrices, the student should carefully follow our
discussion.

Example 1 demonstrates how to systematically solve a simple eigenvalue problem.

Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix

=5 2
A= .
2 =2
Solution. (a) Eigenvalues. These must be determined first. Equation (1) is
-5 2 X1 X1 *5x1+2)C2:)\X1
Ax = =A H in components,
2 =2 X9 X9 2X1 - ZXZ = )UC2.

Transferring the terms on the right to the left, we get

(=5 = Mxq + 2xo =0
(2%)
2x1 + (=2 — AMxg = 0.

This can be written in matrix notation

(3%) (A—ADx=0

because (1) is Ax — Ax = Ax — AIx = (A — ADx = 0, which gives (3*). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution x # 0 (an eigenvector of A we are

looking for) if and only if its coefficient determinant is zero, that is,

-5-A 2
(4*)  D(A) = det(A — Al) =

‘=(—5—/\)(—2—)\)—4=)\2+7/\+6=0.
-2 -2
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We call D(A) the characteristic determinant or, if expanded, the characteristic polynomial, and D(A) = 0

the characteristic equation of A. The solutions of this quadratic equation are A; = —1 and Ay = —6. These
are the eigenvalues of A.
(b1) Eigenvector of A corresponding to Ay. This vector is obtained from (2*) with A = A; = —1, that is,
—4x1+ 2x9=0

le— X2=0.

A solution is xg = 2x7, as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to A; = —1 up to a scalar multiple. If we choose x; = 1, we obtain
the eigenvector

X; = , Check: Axq = = = (—=Dx1 = Aixq.
2 2 =22 -2

(bs) Eigenvector of A corresponding to As. For A = Ag = —6, equation (2*) becomes

)C1+2)C2:0

2x1 + 4x9 = 0.
A solution is xg = —x1/2 with arbitrary x;. If we choose x; = 2, we get xo = —1. Thus an eigenvector of A
corresponding to Ag = —6is
2 =5 2 2 —12
Xo = s Check: Axy = = = (—6)X3 = AgXo.
-1 2 2| -1 6

For the matrix in the intuitive opening example at the start of Sec. 8.1, the characteristic equation is
A2 — 131 +30=(\— 10)(A — 3) = 0. The eigenvalues are {10, 3}. Corresponding eigenvectors are
[3 4T and[—1 117, respectively. The reader may want to verify this. [ |

This example illustrates the general case as follows. Equation (1) written in components is

ajlXi + .- +a1nxn= )\xl
as1X1 + -+ aAopXy = )\Xz
apix1 + 0t Xy = Axy,.

Transferring the terms on the right side to the left side, we have

((111 - )\)xl + ajoXo + -+ ApXn =0
asi1X1 + (6122 - /\)x2 + - + AonX =0

(2)
an1X1 +  apexs + + (@ — Mx,, =0

In matrix notation,

3) (A — ADx = 0.
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THEOREM 1

THEOREM 2

PROOF

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

apjp — A az ain
asy agg — A - Aoy
4) D(A) = det(A — Al = = 0.
ap1 ap2 e App — A

A — Al is called the characteristic matrix and D (A) the characteristic determinant of

A. Equation (4) is called the characteristic equation of A. By developing D(A) we obtain

a polynomial of nth degree in A. This is called the characteristic polynomial of A.
This proves the following important theorem.

Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
4) of A.

Hence an n X n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

For larger n, the actual computation of eigenvalues will, in general, require the use
of Newton’s method (Sec. 19.2) or another numeric approximation method in Secs.
20.7-20.9.

The eigenvalues must be determined first. Once these are known, corresponding
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination,
where A is the eigenvalue for which an eigenvector is wanted. This is what we did in
Example 1 and shall do again in the examples below. (To prevent misunderstandings:
numeric approximation methods, such as in Sec. 20.8, may determine eigenvectors first.)

Eigenvectors have the following properties.

Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue A,
so are w + x (provided x # —w) and kx for any k # 0.

Hence the eigenvectors corresponding to one and the same eigenvalue A of A,
together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that A.

Aw = Aw and Ax = Ax imply A(w + X) = Aw + Ax = AW + Ax = M(Ww + x) and
A (kw) = k(Aw) = k(Aw) = A(kw); hence A (kw + €x) = A(kw + €x). [ |

In particular, an eigenvector x is determined only up to a constant factor. Hence we
can normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For
instance, x; = [1 2]" in Example 1 has the length [[x;| = V1% + 2% = V/5; hence
[1/V5 2/ V51" is a normalized eigenvector (a unit eigenvector).
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EXAMPLE 2

goobooobodgd
goobooobooodd
0

Examples 2 and 3 will illustrate that an n X n matrix may have n linearly independent
eigenvectors, or it may have fewer than n. In Example 4 we shall see that a real matrix
may have complex eigenvalues and eigenvectors.

Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

-2 2 -3
A=| 2 1 -6
-1 -2 0

Solution. For our matrix, the characteristic determinant gives the characteristic equation
—AB =22+ 210+ 45=0.

The roots (eigenvalues of A) are Ay = 5, Ay = A3 = —3. (If you have trouble finding roots, you may want to
use a root finding algorithm such as Newton’s method (Sec. 19.2). Your CAS or scientific calculator can find
roots. However, to really learn and remember this material, you have to do some exercises with paper and pencil.)
To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system (A — AI)x = 0, first with A = 5

and then with A = —3. For A = 5 the characteristic matrix is
=7 2 -3 -7 2 -3
A-M=A-5I=| 2 -4 —6|. Itrow-reducesto 0o -%# -4
-1 -2 -5 0 0 0
Hence it has rank 2. Choosing x3 = —1 we have xg = 2 from —%xz - %SX?, = 0 and then x; = 1 from

—7x1 + 2x2 — 3x3 = 0. Hence an eigenvector of A correspondingto A = Sisx; = [1 2 fl]T.
For A = —3 the characteristic matrix

1 2 -3 1 2 -3
A-AM=A+3=| 2 4 -6 row-reduces to 0 0 0.
-1 -2 3 0 0 0
Hence it has rank 1. From x; + 2x9 — 3x3 = 0 we have x; = —2xg + 3x3. Choosing xg = 1,x3 = 0 and
xg = 0,x3 = 1, we obtain two linearly independent eigenvectors of A corresponding to A = —3 [as they must
exist by (5), Sec. 7.5, with rank = 1 and n = 3],
-2
Xg = 1
0
and
3
x3=[0]. |

The order M, of an eigenvalue A as a root of the characteristic polynomial is called the
algebraic multiplicity of A. The number m, of linearly independent eigenvectors
corresponding to A is called the geometric multiplicity of A. Thus m, is the dimension
of the eigenspace corresponding to this A.
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EXAMPLE 3

EXAMPLE 4

THEOREM 3

PROOF

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Since the characteristic polynomial has degree n, the sum of all the algebraic
multiplicities must equal n. In Example 2 for A = —3 we have m, = M, = 2. In general,
my, = M,, as can be shown. The difference Ay, = M, — m, is called the defect of A.
Thus A_3 = 0 in Example 2, but positive defects A, can easily occur:

Algebraic Multiplicity, Geometric Multiplicity. Positive Defect

The characteristic equation of the matrix

0 1
—A

=\
is det (A — AI) =

0 0

Hence A = 0 is an eigenvalue of algebraic multiplicity My = 2. But its geometric multiplicity is only mo = 1,
since eigenvectors result from —0x; + xg = 0, hence xg = 0, in the form [x; 0]". Hence for A = 0 the defect
is AO = 1.

Similarly, the characteristic equation of the matrix

3 2 3—-A 2

A= =3-1%2=0.

0 3 3—-A

} is det (A — AI) = ’

Hence A = 3 is an eigenvalue of algebraic multiplicity M3 = 2, but its geometric multiplicity is only mg = 1,
since eigenvectors result from Ox; + 2xg = 0 in the form [x; 0. [ |

Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

0 1 —A 1
A= is  det(A — AI) = =2+1=0
-1 0 -1 —=A
It gives the eigenvalues Ay = i(= V—1), A = —i. Eigenvectors are obtained from —ix; + xo = 0 and

ix; + x9 = 0, respectively, and we can choose x; = 1 to get

o L :

In the next section we shall need the following simple theorem.

Eigenvalues of the Transpose

The transpose AT of a square matrix A has the same eigenvalues as A.

Transposition does not change the value of the characteristic determinant, as follows from
Theorem 2d in Sec. 7.7. |

Having gained a first impression of matrix eigenvalue problems, we shall illustrate their
importance with some typical applications in Sec. 8.2.
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PROBLEM SET 8.1

Use the given A or factor in Probs. 11 and 15.

11.

12.

14.

EIGENVALUES, EIGENVECTORS
Find the eigenvalues. Find the corresponding eigenvectors.

15.
0 (0 0]
2.
-0.6 10 0]
2 .
4.
_2 4- 16-
3 1 2]
6.
0 10 3]
[ a b
8
i —b a
—-0.6 [cos® —sin6
10. 17.
0.8 | sin 6 cos 6
18.
) 19.
5 0, A=3 20.
0
_ 21.
3 13 5 2
6 13 2 7 -8 22.
1] 5 4 7 23.
-1 24.
0
4

329

-1 0 12 0
0 -1 0 12
., A+ 1?2
0 0 -1 -4
0 0 -4 -1

0 1 -2 4
2 4 -1 =2
0 2 =2 3

LINEAR TRANSFORMATIONS

AND EIGENVALUES

Find the matrix A in the linear transformation y = Ax,
where X = [x; xz]T x =[x1 xo x3]T) are Cartesian
coordinates. Find the eigenvalues and eigenvectors and
explain their geometric meaning.

Counterclockwise rotation through the angle 77/2 about
the origin in R2.
Reflection about the xq-axis in RZ.

Orthogonal projection (perpendicular projection) of R?
onto the xo-axis.

Orthogonal projection of R? onto the plane xo = xq.

7
GENERAL PROBLEMS

_ 25.

Nonzero defect. Find further 2 X 2 and 3 X 3
matrices with positive defect. See Example 3.
Multiple eigenvalues. Find further 2 X 2 and 3 X 3
matrices with multiple eigenvalues. See Example 2.
Complex eigenvalues. Show that the eigenvalues of a
real matrix are real or complex conjugate in pairs.
Inverse matrix. Show that A~ exists if and only if
the eigenvalues Aq,---, A, are all nonzero, and then
A~ has the eigenvalues 1/Aq, -+, 1/A,.

Transpose. [llustrate Theorem 3 with examples of your
own.

8.2 Some Applications of Eigenvalue Problems

We have selected some typical examples from the wide range of applications of matrix
eigenvalue problems. The last example, that is, Example 4, shows an application involving
vibrating springs and ODE:s. It falls into the domain of Chapter 4, which covers matrix
eigenvalue problems related to ODE’s modeling mechanical systems and electrical



330

EXAMPLE 1

goooboood
p.34400600 0000
oo

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

networks. Example 4 is included to keep our discussion independent of Chapter 4.
(However, the reader not interested in ODEs may want to skip Example 4 without loss
of continuity.)

Stretching of an Elastic Membrane

An elastic membrane in the x1xo-plane with boundary circle x% + x% = 1 (Fig. 160) is stretched so that a point
P: (x1, x3) goes over into the point Q: (y1, y2) given by

N 5 3|« y1 = 5x1 + 3xg
(N y= = Ax = ;  in components,

Vo 3 5||xe yo = 3x1 + 5xs.

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this
deformation?

Solution. We are looking for vectors x such that y = Ax. Since y = Ax, this gives Ax = Ax, the equation
of an eigenvalue problem. In components, AX = AX is

5x1 + 3x9 = Axq 5= Axqp + 3xg =0
) or
3)C1 + SXZ = )\Xz 3X1 + (5 - /\)Xz = 0.

The characteristic equation is

5-A 3
3)

‘—(5)\)29—0.
3 5-A

Its solutions are A; = 8 and Ay = 2. These are the eigenvalues of our problem. For A = Ay = 8§, our system (2)
becomes

—3x1 + 3x9 =0, ‘ Solution xg = x1, x arbitrary,

3x1 — 3x9 = 0. for instance, x; = xg = 1.

For Ay = 2, our system (2) becomes

3x1 + 3x9 =0, Solution xg = —x7, x7 arbitrary,
3x1 + 3x9 = 0. for instance, x1 = 1,x9 = —1.
We thus obtain as eigenvectors of A, for instance, [1 17" corresponding to Ay and [1  — 1" corresponding to

Ag (or a nonzero scalar multiple of these). These vectors make 45° and 135° angles with the positive x,-direction.
They give the principal directions, the answer to our problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 160.

Accordingly, if we choose the principal directions as directions of a new Cartesian uug-coordinate system,
say, with the positive u1-semi-axis in the first quadrant and the positive us-semi-axis in the second quadrant of
the xqxg-system, and if we set u; = rcos ¢, ug = rsin ¢, then a boundary point of the unstretched circular
membrane has coordinates cos ¢, sin ¢. Hence, after the stretch we have

z1 = 8cos ¢, Zo = 2sin ¢.

Since cos? ¢ + sin® ¢ = 1, this shows that the deformed boundary is an ellipse (Fig. 160)

2 2
21 )

@) ¥+;=1. |
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Fig. 160. Undeformed and deformed membrane in Example 1

Eigenvalue Problems Arising from Markov Processes

Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit
state of the process in which the state vector x is reproduced under the multiplication by the stochastic matrix
A governing the process, that is, Ax = x. Hence A should have the eigenvalue 1, and x should be a corresponding
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled
by the process.

In that example,

0.7 0.1 0 0.7 0.2 011 1
A=102 0.9 02]. For the transpose, 0.1 0.9 0 11=1|1
0.1 0 0.8 0 0.2 0.8 (|1 1

Hence A" has the eigenvalue 1, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A
for A = 1 is obtained from

~03 01 0 % 1 O
A-1I=| 02 -01 021, row-reduced to 0 —30 3
01 0 —02 0o 0 0

Taking x5 = 1, we get xo = 6 from —x5/30 + x3/5 = 0 and then x7 = 2 from —3x7/10 + x2/10 = 0. This
givesx =[2 6 117 It means that in the long run, the ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions
to avoid rounding errors.) [ |

Eigenvalue Problems Arising from Population Models. Leslie Model

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let
the “Leslie matrix” be

0 23 04

(5) L= [ljk] =10.6 0 0

0 03 0

where /qj is the average number of daughters born to a single female during the time she is in age class &, and
lj, j—1(j = 2, 3) is the fraction of females in age class j — 1 that will survive and pass into class j. (a) What is the
number of females in each class after 3, 6, 9 years if each class initially consists of 400 females? (b) For what initial
distribution will the number of females in each class change by the same proportion? What is this rate of change?
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Solution. (a) Initially, xj, = [400 400 400]. After 3 years,

0 2.3 0.4 | | 400 1080
X3) = Lx) =| 0.6 0 0 400 [=]| 240].
0 0.3 0 400 120

Similarly, after 6 years the number of females in each class is given by X(TG) = (LX(3))T = [600 648 72], and
after 9 years we have x(g) = (Lxg)' = [1519.2 360 194.4].

(b) Proportional change means that we are looking for a distribution vector x such that Lx = Ax, where A is
the rate of change (growth if A > 1, decrease if A < 1). The characteristic equation is (develop the characteristic
determinant by the first column)

det (L — AI) = =A% — 0.6(—2.3\ — 0.3 - 0.4) = —A% + 1381 + 0.072 = 0.

A positive root is found to be (for instance, by Newton’s method, Sec. 19.2) A = 1.2. A corresponding eigenvector
x can be determined from the characteristic matrix

—-1.2 2.3 0.4 1
A-121=| 06 -—12 0 | say, x=| 05
0 03 —-12 0.125

where x3 = 0.125 is chosen, xg = 0.5 then follows from 0.3xo — 1.2x3 =0, and x; =1 from
—1.2x1 + 2.3x9 + 0.4x3 = 0. To get an initial population of 1200 as before, we multiply x by
1200/(1 + 0.5 + 0.125) = 738. Answer: Proportional growth of the numbers of females in the three classes
will occur if the initial values are 738, 369, 92 in classes 1, 2, 3, respectively. The growth rate will be 1.2 per
3 years. [ |

Vibrating System of Two Masses on Two Springs (Fig. 161)

Mass—spring systems involving several masses and springs can be treated as eigenvalue problems. For instance,
the mechanical system in Fig. 161 is governed by the system of ODEs

© y1 = =3y1 — 2(y1 — y2) = —5y1 + 29
n

Yo = —2(y2 —yD) = 2y1 — 2y2

where y; and y» are the displacements of the masses from rest, as shown in the figure, and primes denote
derivatives with respect to time 7. In vector form, this becomes

" y{, =5 2|In
O yo=| , | =Ay= :
y2 2 2]y

k=3
(y,=0) m,=1
T
Y1
k=2 (Net change in
spring length
(yZ:O) m2=1 :yz_yl)
y
System in
static System in
equilibrium motion

Fig. 161. Masses on springs in Example 4
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We try a vector solution of the form
®) y = xe".

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution into (7) gives

’xe”t = Axe".
Dividing by e“ and writing w? = ), we see that our mechanical system leads to the eigenvalue problem
2

9) Ax = Ax where A = .

From Example 1 in Sec. 8.1 we see that A has the eigenvalues A; = —1 and Ay = —6. Consequently,
o= *V—1= *iand V=6 = +iV/6, respectively. Corresponding eigenvectors are

1 2
(10) X; = { } and X9 = { }
2 -1

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]
Xle:it = xq(cost £ isini),
xzeﬂ\/ét = Xy(cos V61 * isin V61).
By addition and subtraction (see Sec. 2.2) we get the four real solutions
X1 COS 1, X1 sin ¢, X9 cos V6 1, Xo sin V6 1.
A general solution is obtained by taking a linear combination of these,

y = Xy(aq cos 1 + by sin 1) + Xo (agcos V6t + bysin V6 1)

with arbitrary constants ay, by, as, be (to which values can be assigned by prescribing initial displacement and
initial velocity of each of the two masses). By (10), the components of y are

y1 = ajcost + bysint + 2ascos V61t + 2bysin V6t

yo = 2aycost + 2bysint — agcos V61 — bysin V6 1.

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because
we have neglected damping. [ |

PROBLEM SET 8.2

ELASTIC DEFORMATIONS 7-9| MARKOV PROCESSES
Given A in a deformation y = Ax, find the principal Find the limit state of the Markov process modeled by the
directions and corresponding factors of extension or given matrix. Show the details.
contr_acuon. Show the details. ] 0.2 0.5
30 15 20 04 7.
1. 2. 0.8 0.5
1.5 3.0 0.4 2.0
) ) 0.4 0.3 0.3 0.6 0.1 0.2
7 V6 5 2
3. 4. 8.103 0.6 0.1 9.104 0.1 04
V6 2 213
- - 0.3 0.1 0.6 0 0.8 04
1L 125 075
5. 6.
3 1 1075 1.25




334 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

AGE-SPECIFIC POPULATION

Find the growth rate in the Leslie model (see Example 3)
with the matrix as given. Show the details.

0 90 5.0 0 345 0.60

10.|04 0 0 | 11.{09 0 0
K 04 0 0 045 0
[0 30 20 20

0.5 0 0 0
12.
0 0.5 0 0

0 0 0.1 0

13-15| LEONTIEF MODELS'

13. Leontief input—output model. Suppose that three
industries are interrelated so that their outputs are used
as inputs by themselves, according to the 3 X 3
consumption matrix

01 05 0
A=lapl=[08 0 0.4
01 05 06

where ajj is the fraction of the output of industry k
consumed (purchased) by industry j. Let p; be the price
charged by industry j for its total output. A problem is
to find prices so that for each industry, total
expenditures equal total income. Show that this leads
to Ap =p, where p=1[p; ps p3l', and find a
solution p with nonnegative p1, ps, ps.

14. Show that a consumption matrix as considered in Prob.
13 must have column sums 1 and always has the
eigenvalue 1.

15. Open Leontief input—output model. If not the whole
output but only a portion of it is consumed by the

industries themselves, then instead of Ax = x (as in Prob.
13), we have x — Ax =y, where X = [x7 X9 x3]T
is produced, Ax is consumed by the industries, and, thus,
y is the net production available for other consumers.
Find for what production x a given demand vector
y=1[0.1 03 0.1]T can be achieved if the consump-
tion matrix is

0.1 0.4 0.2
A =105 0 0.1

0.1 04 0.4
[16-20] GENERAL PROPERTIES OF EIGENVALUE
PROBLEMS
Let A = [aj] be an n X n matrix with (not necessarily
distinct) eigenvalues Ag, - -+, A,. Show.
16. Trace. The sum of the main diagonal entries, called
the trace of A, equals the sum of the eigenvalues of A.
17. “Spectral shift.” A — kI has the eigenvalues
A — k,---, Ay — k and the same eigenvectors as A.

18. Scalar multiples, powers. kA has the eigenvalues
kAq, -+, kA A™(m = 1,2,---) has the eigenvalues

T, -+, At The eigenvectors are those of A.
19. Spectral mapping theorem. The ‘“polynomial
matrix”
PA) = kppA™ + k1AL + o+ A+ kol
has the eigenvalues
PA) = kg AT" + ket AT H+ o+ kA + ko

where j = 1,---, n, and the same eigenvectors as A.

20. Perron’s theorem. A Leslie matrix L with positive
19, 13, l21, I35 has a positive eigenvalue. (This is a
special case of the Perron—Frobenius theorem in Sec.

20.7, which is difficult to prove in its general form.)

8.3 Symmetric, Skew-Symmetric,
and Orthogonal Matrices

We consider three classes of real square matrices that, because of their remarkable
properties, occur quite frequently in applications. The first two matrices have already been
mentioned in Sec. 7.2. The goal of Sec. 8.3 is to show their remarkable properties.

LWASSILY LEONTIEF (1906-1999). American economist at New York University. For his input-output
analysis he was awarded the Nobel Prize in 1973.
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DEFINITIONS Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix A = [aji] is called

symmetric if transposition leaves it unchanged,

ooboooodn

gogodn 1) AT = A, thus ax; = Ak,

skew-symmetric if transposition gives the negative of A,
) AT = —A, thus ax; = —aji,
orthogonal if transposition gives the inverse of A,

3) Al =A"1

EXAMPLE 1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

-3 1 5 0 9 —12 z 1z
10 -2, -9 0 20|, -z z 1
5 -2 4 12 —20 0 i 3 -3

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric
matrix has all main diagonal entries zero. (Can you prove this?) [ |

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

) R=1A+A") and S=21A-AN.

EXAMPLE 2 Illustration of Formula (4)

9 5 2 9.0 35 3.5 0 1.5 —15
A=|2 3 -8|=R+S=|35 30 -20(+[-15 0 —60 L
5 4 3 35 —20 3.0 1.5 6.0 0
THEOREM 1 Eigenvalues of Symmetric and Skew-Symmetric Matrices

(@) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

This basic theorem (and an extension of it) will be proved in Sec. 8.5.
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EXAMPLE 3

THEOREM 2

PROOF

CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Eigenvalues of Symmetric and Skew-Symmetric Matrices

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix
in Example 1 has the eigenvalues 0, —25i, and 25i. (Verify this.) The following matrix has the real eigenvalues
1 and 5 but is not symmetric. Does this contradict Theorem 1?

] :

Orthogonal Transformations and Orthogonal Matrices

Orthogonal transformations are transformations
5 y = Ax where A is an orthogonal matrix.

With each vector x in R™ such a transformation assigns a vector y in R". For instance,
the plane rotation through an angle 6

Y1 cosf —sinf || xq

(0) y = =1 .
Vo sin 0 cos O || xo

is an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation (possibly combined with a reflection
in a straight line or a plane, respectively).

The main reason for the importance of orthogonal matrices is as follows.

Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
aand b in R", defined by

(7 a*b=ab=[a - a,

That is, for any a and b in R", orthogonal n X n matrix A, and u = Aa,v = Ab
we haveusv = a*b.

Hence the transformation also preserves the length or norm of any vector a in
R"™ given by

®) lal = Va+a = Va'a.

Let A be orthogonal. Let u = Aa and v = Ab. We must show that u*v = a *b. Now
(Aa)" = a"AT by (10d) in Sec. 7.2 and ATA=A"TA=1 by (3). Hence

9) usv=u'v=(Aa)'Ab=a'ATAb=a'lb=a'b=a-b.

From this the invariance of | a| follows if we set b = a. |
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THEOREM 3

PROOF

THEOREM 4

PROOF

EXAMPLE 4

THEOREM 5

Orthogonal matrices have further interesting properties as follows.

Orthonormality of Column and Row Vectors
A real square matrix is orthogonal if and only if its column vectors ay, - -, a,, (and
also its row vectors) form an orthonormal system, that is,
0 if j#k
(10) ajcag = ajTak = {
1 if j=k
(a) Let A be orthogonal. Then A~ A = ATA = L In terms of column vectors aj, -+, a,,
aj aja; alag o+ ajay

(1) I=ATA=AA=|: [la;---a, =
a, ara; ajas, -+ aya,

The last equality implies (10), by the definition of the n X n unit matrix I. From (3) it
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 12).
Now the column vectors of A_1(=AT) are the row vectors of A. Hence the row vectors
of A also form an orthonormal system.

(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11)
must be 0 and the diagonal entries 1. Hence ATA = L as (11) shows. Similarly, AAT = L.
This implies A" = A"l because also AT'A = AA™! = I and the inverse is unique. Hence
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by
what has been said at the end of part (a). [ |

Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value +1 or —1.

From det AB = det A det B (Sec. 7.8, Theorem 4) and det AT = det A (Sec. 7.7,
Theorem 2d), we get for an orthogonal matrix

1 = det I = det(AA™!) = det(AA") = det A det AT = (det A)2. |

Illustration of Theorems 3 and 4

The last matrix in Example 1 and the matrix in (6) illustrate Theorems 3 and 4 because their determinants are
—1 and +1, as you should verify. [ |

Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.
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The first part of the statement holds for any real matrix A because its characteristic
polynomial has real coefficients, so that its zeros (the eigenvalues of A) must be as
|
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PROOF
indicated. The claim that |A| = 1 will be proved in Sec. 8.5.
EXAMPLE 5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic equation
B +E2+30-1=0

Now one of the eigenvalues must be real (why?), hence +1 or —1. Trying, we find —1. Division by A + 1
gives —(\2 - 5A/3 + 1) = 0 and the two eigenvalues (5 + iV11)/6 and (5 — iV11)/6, which have absolute
value 1. Verify all of this. |

Looking back at this section, you will find that the numerous basic results it contains have
relatively short, straightforward proofs. This is typical of large portions of matrix
eigenvalue theory.

PROBLEM SET 8.3

SPECTRUM

Are the following matrices symmetric, skew-symmetric, or
orthogonal? Find the spectrum of each, thereby illustrating
Theorems 1 and 5. Show your work in detail.

(b) Rotation. Show that (6) is an orthogonal trans-
formation. Verify that it satisfies Theorem 3. Find the
inverse transformation.

(c) Powers. Write a program for computing powers

0.8 0.6 a b A™(m=1,2,---) of a 2 X 2 matrix A and their
L ' ' 2. spectra. Apply it to the matrix in Prob. 1 (call it A). To
—0.6 0.8 -b a what rotation does A correspond? Do the eigenvalues
. of A" have a limit as m —> %?
3 2 8 4 cos¢ —sin (d) Compute the eigenvalues of (0.9A)™, where A is
B 2 “|sing  cosd the matrix in Prob. 1. Plot them as points. What is their
- - limit? Along what kind of curve do these points
6 0 0 a k k approach the limit?
510 ) 6. | k a k (e) Find A such that y = Ax is a counterclockwise
rotation through 30° in the plane.
10 =2 5 | k k a
o 9 -—-12 1 0 0 13-20| GENERAL PROPERTIES
7.1 -9 0 20 8. 10 cos —sin6 13. Verification. Verify the statements in Example 1.
. 14. Verify the statements in Examples 3 and 4.
12 =20 0 0 sin 0 cos 6 .
- - 15. Sum. Are the eigenvalues of A + B sums of the
0 0 1 4 8 i eigenvalues of A and of B?
9 0 1 0 0. -2 4 a4 16. Orthogonality. Prove that eigenvectors of a symmetric
: : 9 9 9 matrix corresponding to different eigenvalues are
-1 0 0 -4 ! 8 orthogonal. Give examples.
11. WRITING PROJECT. Section Summary. Sum- 17. Skew-symmetric matrix. Show that the inverse of a

12

marize the main concepts and facts in this section,
giving illustrative examples of your own.

skew-symmetric matrix is skew-symmetric.

18. Do there exist nonsingular skew-symmetric n X n

. CAS EXPERIMENT. Orthogonal Matrices.

(a) Products. Inverse. Prove that the product of two
orthogonal matrices is orthogonal, and so is the inverse
of an orthogonal matrix. What does this mean in terms
of rotations?

19.

20.

matrices with odd n?

Orthogonal matrix. Do there exist skew-symmetric
orthogonal 3 X 3 matrices?

Symmetric matrix. Do there exist nondiagonal
symmetric 3 X 3 matrices that are orthogonal?
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