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C H A P T E R 8

Linear Algebra: 
Matrix Eigenvalue Problems

A matrix eigenvalue problem considers the vector equation

(1)

Here A is a given square matrix, an unknown scalar, and x an unknown vector. In a
matrix eigenvalue problem, the task is to determine ’s and x’s that satisfy (1). Since

is always a solution for any and thus not interesting, we only admit solutions
with 

The solutions to (1) are given the following names: The ’s that satisfy (1) are called
eigenvalues of A and the corresponding nonzero x’s that also satisfy (1) are called
eigenvectors of A.

From this rather innocent looking vector equation flows an amazing amount of relevant
theory and an incredible richness of applications. Indeed, eigenvalue problems come up
all the time in engineering, physics, geometry, numerics, theoretical mathematics, biology,
environmental science, urban planning, economics, psychology, and other areas. Thus, in
your career you are likely to encounter eigenvalue problems.

We start with a basic and thorough introduction to eigenvalue problems in Sec. 8.1 and
explain (1) with several simple matrices. This is followed by a section devoted entirely
to applications ranging from mass–spring systems of physics to population control models
of environmental science. We show you these diverse examples to train your skills in
modeling and solving eigenvalue problems. Eigenvalue problems for real symmetric,
skew-symmetric, and orthogonal matrices are discussed in Sec. 8.3 and their complex
counterparts (which are important in modern physics) in Sec. 8.5. In Sec. 8.4 we show
how by diagonalizing a matrix, we obtain its eigenvalues.

COMMENT. Numerics for eigenvalues (Secs. 20.6–20.9) can be studied immediately
after this chapter.

Prerequisite: Chap. 7.
Sections that may be omitted in a shorter course: 8.4, 8.5.
References and Answers to Problems: App. 1 Part B, App. 2.

l

x � 0.
lx � 0

l

l

Ax � lx.
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SEC. 8.1 The Matrix Eigenvalue Problem. Determining Eigenvalues and Eigenvectors 323

The following chart identifies where different types of eigenvalue problems appear in the
book.

Topic Where to find it

Matrix Eigenvalue Problem (algebraic eigenvalue problem) Chap. 8
Eigenvalue Problems in Numerics Secs. 20.6–20.9
Eigenvalue Problem for ODEs (Sturm–Liouville problems) Secs. 11.5, 11.6
Eigenvalue Problems for Systems of ODEs Chap. 4
Eigenvalue Problems for PDEs Secs. 12.3–12.11

8.1 The Matrix Eigenvalue Problem. Determining
Eigenvalues and Eigenvectors

Consider multiplying nonzero vectors by a given square matrix, such as

We want to see what influence the multiplication of the given matrix has on the vectors.
In the first case, we get a totally new vector with a different direction and different length
when compared to the original vector. This is what usually happens and is of no interest
here. In the second case something interesting happens. The multiplication produces a
vector which means the new vector has the same direction as
the original vector. The scale constant, which we denote by is 10. The problem of
systematically finding such ’s and nonzero vectors for a given square matrix will be the
theme of this chapter. It is called the matrix eigenvalue problem or, more commonly, the
eigenvalue problem.

We formalize our observation. Let be a given nonzero square matrix of
dimension Consider the following vector equation:

(1)

The problem of finding nonzero x’s and ’s that satisfy equation (1) is called an eigenvalue
problem.

Remark. So A is a given square matrix, x is an unknown vector, and is an
unknown scalar. Our task is to find ’s and nonzero x’s that satisfy (1). Geometrically,
we are looking for vectors, x, for which the multiplication by A has the same effect as
the multiplication by a scalar in other words, Ax should be proportional to x. Thus,
the multiplication has the effect of producing, from the original vector x, a new vector

that has the same or opposite (minus sign) direction as the original vector. (This was
all demonstrated in our intuitive opening example. Can you see that the second equation in
that example satisfies (1) with and and A the given matrix?
Write it out.) Now why do we require x to be nonzero? The reason is that is
always a solution of (1) for any value of because This is of no interest.A0 � 0.l,

x � 0
2 � 2x � [3 4]T,l � 10

lx

l;

l

l(!)

l

Ax � lx.

n � n.
A � [ajk]

l

l

[30 40]T � 10 [3 4]T,

c6 3

4 7
d c5

1
d � c33

27
d ,  c6 3

4 7
d c3

4
d � c30

40
d .
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324 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

We introduce more terminology. A value of for which (1) has a solution is
called an eigenvalue or characteristic value of the matrix A. Another term for is a latent
root. (“Eigen” is German and means “proper” or “characteristic.”). The corresponding
solutions of (1) are called the eigenvectors or characteristic vectors of A
corresponding to that eigenvalue . The set of all the eigenvalues of A is called the
spectrum of A. We shall see that the spectrum consists of at least one eigenvalue and at
most of n numerically different eigenvalues. The largest of the absolute values of the
eigenvalues of A is called the spectral radius of A, a name to be motivated later.

How to Find Eigenvalues and Eigenvectors
Now, with the new terminology for (1), we can just say that the problem of determining
the eigenvalues and eigenvectors of a matrix is called an eigenvalue problem. (However,
more precisely, we are considering an algebraic eigenvalue problem, as opposed to an
eigenvalue problem involving an ODE or PDE, as considered in Secs. 11.5 and 12.3, or
an integral equation.)

Eigenvalues have a very large number of applications in diverse fields such as in
engineering, geometry, physics, mathematics, biology, environmental science, economics,
psychology, and other areas. You will encounter applications for elastic membranes,
Markov processes, population models, and others in this chapter.

Since, from the viewpoint of engineering applications, eigenvalue problems are the most
important problems in connection with matrices, the student should carefully follow our
discussion.

Example 1 demonstrates how to systematically solve a simple eigenvalue problem.

E X A M P L E  1 Determination of Eigenvalues and Eigenvectors

We illustrate all the steps in terms of the matrix

Solution. (a) Eigenvalues. These must be determined first. Equation (1) is

Transferring the terms on the right to the left, we get

(2 )

This can be written in matrix notation

(3 )

because (1) is which gives (3 ). We see that this is a homogeneous
linear system. By Cramer’s theorem in Sec. 7.7 it has a nontrivial solution (an eigenvector of A we are
looking for) if and only if its coefficient determinant is zero, that is,

(4 ) D (l) � det (A � lI) � 2�5 � l 2

2 �2 � l
2 � (�5 � l)(�2 � l) � 4 � l2 � 7l � 6 � 0.*

x � 0
*Ax � lx � Ax � lIx � (A � lI)x � 0,

(A � lI)x � 0*

(�5 � l)x1 � 2x2 � 0

2x1 � (�2 � l)x2 � 0.
*

Ax � c�5 2

2 �2
d c x1

x2

d � l c x1

x2

d ;  in components,  
�5x1 � 2x2 � lx1

2x1 � 2x2 � lx2.

A � c�5 2

2 �2
d .

l

x � 0

l

x � 0,l,
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We call the characteristic determinant or, if expanded, the characteristic polynomial, and 
the characteristic equation of A. The solutions of this quadratic equation are and . These
are the eigenvalues of A.

( ) Eigenvector of A corresponding to . This vector is obtained from (2 ) with , that is,

A solution is , as we see from either of the two equations, so that we need only one of them. This
determines an eigenvector corresponding to up to a scalar multiple. If we choose , we obtain
the eigenvector

( ) Eigenvector of A corresponding to . For , equation (2 ) becomes

A solution is with arbitrary . If we choose , we get Thus an eigenvector of A
corresponding to is

For the matrix in the intuitive opening example at the start of Sec. 8.1, the characteristic equation is
The eigenvalues are Corresponding eigenvectors are

and , respectively. The reader may want to verify this.

This example illustrates the general case as follows. Equation (1) written in components is

Transferring the terms on the right side to the left side, we have

(2)

In matrix notation,

(3) (A � lI)x � 0.

(a11 � l)x1 � a12x2 � Á � a1nxn � 0

a21x1 � (a22 � l)x2 � Á � a2nxn � 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

an1x1 � an2x2 � Á � (ann � l)xn � 0.

a11x1 � Á � a1nxn � lx1

a21x1 � Á � a2nxn � lx2

# # # # # # # # # # # # # # # # # # # # # # #

an1x1 � Á � annxn � lxn.

�[�1 1]T[3 4]T
{10, 3}.l2 � 13l � 30 � (l � 10)(l � 3) � 0.

x2 � c 2

�1
d ,   Check:   Ax2 � c�5 2

2 �2
d c 2

�1
d � c�12

6
d � (�6)x2 � l2x2.

l2 � �6
x2 � �1.x1 � 2x1x2 � �x1>2

 2x1 � 4x2 � 0.

 x1 � 2x2 � 0

*l � l2 � �6l2b2

x1 � c1
2
d ,   Check:   Ax1 � c�5 2

2 �2
d c1

2
d � c�1

�2
d � (�1)x1 � l1x1.

x1 � 1l1 � �1
x2 � 2x1

 2x1 � x2 � 0.

 �4x1 � 2x2 � 0

l � l1 � �1*l1b1

l2 � �6l1 � �1
D (l) � 0D (l)
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326 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

By Cramer’s theorem in Sec. 7.7, this homogeneous linear system of equations has a
nontrivial solution if and only if the corresponding determinant of the coefficients is zero:

(4)

is called the characteristic matrix and the characteristic determinant of
A. Equation (4) is called the characteristic equation of A. By developing we obtain
a polynomial of nth degree in . This is called the characteristic polynomial of A.

This proves the following important theorem.

T H E O R E M  1 Eigenvalues

The eigenvalues of a square matrix A are the roots of the characteristic equation
(4) of A.

Hence an n � n matrix has at least one eigenvalue and at most n numerically
different eigenvalues.

For larger n, the actual computation of eigenvalues will, in general, require the use 
of Newton’s method (Sec. 19.2) or another numeric approximation method in Secs.
20.7–20.9.

The eigenvalues must be determined first. Once these are known, corresponding
eigenvectors are obtained from the system (2), for instance, by the Gauss elimination,
where is the eigenvalue for which an eigenvector is wanted. This is what we did in
Example 1 and shall do again in the examples below. (To prevent misunderstandings:
numeric approximation methods, such as in Sec. 20.8, may determine eigenvectors first.)

Eigenvectors have the following properties.

T H E O R E M  2 Eigenvectors, Eigenspace

If w and x are eigenvectors of a matrix A corresponding to the same eigenvalue
so are (provided ) and kx for any .

Hence the eigenvectors corresponding to one and the same eigenvalue of A,
together with 0, form a vector space (cf. Sec. 7.4), called the eigenspace of A
corresponding to that .

P R O O F and imply and 
hence 

In particular, an eigenvector x is determined only up to a constant factor. Hence we
can normalize x, that is, multiply it by a scalar to get a unit vector (see Sec. 7.9). For 
instance, in Example 1 has the length hence 

is a normalized eigenvector (a unit eigenvector).[1>15 2>15]T
�x1� � 212 � 22 � 15;x1 � [1 2]T

�A (kw � /x) � l (kw � /x).A (kw) � k (Aw) � k (lw) � l (kw);
A(w � x) � Aw � Ax � lw � lx � l(w � x)Ax � lxAw � lw

l

l

k � 0x � �ww � x
l,

l

l

D(l)
D (l)A � lI

D(l) � det (A � lI) � 5a11 � l a12
Á a1n

a21 a22 � l Á a2n

# # Á #

an1 an2
Á ann � l

5 � 0.
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Examples 2 and 3 will illustrate that an matrix may have n linearly independent
eigenvectors, or it may have fewer than n. In Example 4 we shall see that a real matrix
may have complex eigenvalues and eigenvectors.

E X A M P L E  2 Multiple Eigenvalues

Find the eigenvalues and eigenvectors of

Solution. For our matrix, the characteristic determinant gives the characteristic equation

The roots (eigenvalues of A) are (If you have trouble finding roots, you may want to
use a root finding algorithm such as Newton’s method (Sec. 19.2). Your CAS or scientific calculator can find
roots. However, to really learn and remember this material, you have to do some exercises with paper and pencil.)
To find eigenvectors, we apply the Gauss elimination (Sec. 7.3) to the system , first with 
and then with . For the characteristic matrix is

Hence it has rank 2. Choosing we have from and then from
Hence an eigenvector of A corresponding to is .

For the characteristic matrix

Hence it has rank 1. From we have Choosing and
, we obtain two linearly independent eigenvectors of A corresponding to [as they must

exist by (5), Sec. 7.5, with and 

and

The order of an eigenvalue as a root of the characteristic polynomial is called the
algebraic multiplicity of The number of linearly independent eigenvectors
corresponding to is called the geometric multiplicity of Thus is the dimension
of the eigenspace corresponding to this l.

mll.l

mll.
lMl

�x3 � D30
1

T .

x2 � D�2

1

0

T
n � 3],rank � 1

l � �3x2 � 0, x3 � 1
x2 � 1, x3 � 0x1 � �2x2 � 3x3.x1 � 2x2 � 3x3 � 0

A � lI � A � 3I � D 1 2 �3

2 4 �6

�1 �2 3

T  row-reduces to  D1 2 �3

0 0 0

0 0 0

T .
l � �3

x1 � [1 2 �1]Tl � 5�7x1 � 2x2 � 3x3 � 0.
x1 � 1� 

24
7  x2 � 48

7  x3 � 0x2 � 2x3 � �1

A � lI � A � 5I � D�7 2 �3

2 �4 �6

�1 �2 �5

T .  It row-reduces to  D�7 2 �3

0 � 
24
7  � 

48
7  

0 0 0

T .
l � 5l � �3

l � 5(A � lI)x � 0

l1 � 5, l2 � l3 � �3.

�l3 � l2 � 21l � 45 � 0.

A � D�2 2 �3

2 1 �6

�1 �2 0

T .

n � n
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328 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Since the characteristic polynomial has degree n, the sum of all the algebraic
multiplicities must equal n. In Example 2 for we have In general,

, as can be shown. The difference is called the defect of 
Thus in Example 2, but positive defects can easily occur:

E X A M P L E  3 Algebraic Multiplicity, Geometric Multiplicity. Positive Defect

The characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity . But its geometric multiplicity is only 
since eigenvectors result from , hence , in the form . Hence for the defect
is 

Similarly, the characteristic equation of the matrix

Hence is an eigenvalue of algebraic multiplicity , but its geometric multiplicity is only 
since eigenvectors result from in the form 

E X A M P L E  4 Real Matrices with Complex Eigenvalues and Eigenvectors

Since real polynomials may have complex roots (which then occur in conjugate pairs), a real matrix may have
complex eigenvalues and eigenvectors. For instance, the characteristic equation of the skew-symmetric matrix

It gives the eigenvalues . Eigenvectors are obtained from and
, respectively, and we can choose to get

In the next section we shall need the following simple theorem.

T H E O R E M  3 Eigenvalues of the Transpose

The transpose AT of a square matrix A has the same eigenvalues as A.

P R O O F Transposition does not change the value of the characteristic determinant, as follows from
Theorem 2d in Sec. 7.7. �

Having gained a first impression of matrix eigenvalue problems, we shall illustrate their
importance with some typical applications in Sec. 8.2.

�c1
i
d  and  c 1

�i
d .

x1 � 1ix1 � x2 � 0
�ix1 � x2 � 0l1 � i (� 1�1), l2 � �i

A � c 0 1

�1 0
d  is  det (A � lI) � 2  �l 1

�1 �l
 2 � l2 � 1 � 0.

�[x1 0]T.0x1 � 2x2 � 0
m3 � 1,M3 � 2l � 3

A � c3 2

0 3
d   is  det (A � lI) � 2  3 � l 2

0 3 � l
 2 � (3 � l)2 � 0.

¢0 � 1.
l � 0[x1 0]Tx2 � 0�0x1 � x2 � 0

m0 � 1,M0 � 2l � 0

A � c0 1

0 0
d  is  det (A � lI) � 2  �l 1

0 �l
 2 � l2 � 0.

¢l¢�3 � 0
l.¢l � Ml � mlml � Ml

ml � Ml � 2.l � �3
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SEC. 8.2 Some Applications of Eigenvalue Problems 329

1–16 EIGENVALUES, EIGENVECTORS
Find the eigenvalues. Find the corresponding eigenvectors.
Use the given or factor in Probs. 11 and 15.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12. 13.

14. D2 0 �1

0 1
2 0

1 0 4

T
D13 5 2

2 7 �8

5 4 7

TD3 5 3

0 4 6

0 0 1

T
D 6 2 �2

2 5 0

�2 0 7

T , l � 3

c cos u �sin u

sin u cos u
dc 0.8 �0.6

0.6 0.8
d

c a b

�b a
dc0 1

0 0
d

c1 2

0 3
dc 0 3

�3 0
d

c 1 2

2 4
dc5 �2

9 �6
d

c0 0

0 0
dc3.0 0

0 �0.6
d

l 15.

16.

17–20 LINEAR TRANSFORMATIONS 
AND EIGENVALUES

Find the matrix A in the linear transformation 
where ( ) are Cartesian
coordinates. Find the eigenvalues and eigenvectors and
explain their geometric meaning.

17. Counterclockwise rotation through the angle about
the origin in .

18. Reflection about the -axis in 

19. Orthogonal projection (perpendicular projection) of 
onto the -axis.

20. Orthogonal projection of onto the plane 

21–25 GENERAL PROBLEMS

21. Nonzero defect. Find further and 
matrices with positive defect. See Example 3.

22. Multiple eigenvalues. Find further and 
matrices with multiple eigenvalues. See Example 2.

23. Complex eigenvalues. Show that the eigenvalues of a
real matrix are real or complex conjugate in pairs.

24. Inverse matrix. Show that exists if and only if
the eigenvalues are all nonzero, and then

has the eigenvalues 

25. Transpose. Illustrate Theorem 3 with examples of your
own.

1>l1, Á , 1>ln.A�1
l1, Á , ln

A�1

3 � 32 � 2

3 � 32 � 2

x2 � x1.R3

x2

R2

R2.x1

R2
p>2

x � [x1 x2 x3]Tx � [x1 x2]T
y � Ax,

E�3 0 4 2

0 1 �2 4

2 4 �1 �2

0 2 �2 3

U
E�1 0 12 0

0 �1 0 12

0 0 �1 �4

0 0 �4 �1

U, (l � 1)2

P R O B L E M  S E T  8 . 1

8.2 Some Applications of Eigenvalue Problems
We have selected some typical examples from the wide range of applications of matrix
eigenvalue problems. The last example, that is, Example 4, shows an application involving
vibrating springs and ODEs. It falls into the domain of Chapter 4, which covers matrix
eigenvalue problems related to ODE’s modeling mechanical systems and electrical
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networks. Example 4 is included to keep our discussion independent of Chapter 4.
(However, the reader not interested in ODEs may want to skip Example 4 without loss
of continuity.)

E X A M P L E  1 Stretching of an Elastic Membrane

An elastic membrane in the -plane with boundary circle (Fig. 160) is stretched so that a point
P: goes over into the point Q: given by

(1)

Find the principal directions, that is, the directions of the position vector x of P for which the direction of the
position vector y of Q is the same or exactly opposite. What shape does the boundary circle take under this
deformation?

Solution. We are looking for vectors x such that . Since , this gives , the equation
of an eigenvalue problem. In components, is

(2) or

The characteristic equation is

(3)

Its solutions are and These are the eigenvalues of our problem. For our system (2)
becomes

For , our system (2) becomes

We thus obtain as eigenvectors of A, for instance, corresponding to and corresponding to
(or a nonzero scalar multiple of these). These vectors make and angles with the positive x1-direction.

They give the principal directions, the answer to our problem. The eigenvalues show that in the principal
directions the membrane is stretched by factors 8 and 2, respectively; see Fig. 160.

Accordingly, if we choose the principal directions as directions of a new Cartesian -coordinate system,
say, with the positive -semi-axis in the first quadrant and the positive -semi-axis in the second quadrant of
the -system, and if we set then a boundary point of the unstretched circular
membrane has coordinates Hence, after the stretch we have

Since , this shows that the deformed boundary is an ellipse (Fig. 160)

(4) �
z1

2

82
 �

z2
2

22
 � 1.

cos2 � � sin2 � � 1

z1 � 8 cos �,  z2 � 2 sin �.

cos �, sin �.
u1 � r cos �, u2 � r sin �,x1x2

u2u1

u1u2

135°45°l2

[1 �1]Tl1[1 1]T

3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � �x1, x1 arbitrary,

for instance, x1 � 1, x2 � �1.

l2 � 2

�3x1 � 3x2 � 0,

3x1 � 3x2 � 0.
 2 Solution x2 � x1, x1 arbitrary,

for instance, x1 � x2 � 1.

l � l1 � 8,l2 � 2.l1 � 8

2  5 � l 3

3 5 � l
 2 � (5 � l)2 � 9 � 0.

(5 � l)x1 �   3x2  � 0

3x1 � (5 � l)x2 � 0.

5x1 � 3x2 � lx1

3x1 � 5x2 � lx2

Ax � lx
Ax � lxy � Axy � lx

y � c y1

y2

d � Ax � c5 3

3 5
d c x1

x2

d ;  in components,  
y1 � 5x1 � 3x2

y2 � 3x1 � 5x2.

(y1, y2)(x1, x2)
x1

2 � x2
2 � 1x1x2

330 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems
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SEC. 8.2 Some Applications of Eigenvalue Problems 331

Fig. 160. Undeformed and deformed membrane in Example 1
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E X A M P L E  2 Eigenvalue Problems Arising from Markov Processes

Markov processes as considered in Example 13 of Sec. 7.2 lead to eigenvalue problems if we ask for the limit
state of the process in which the state vector x is reproduced under the multiplication by the stochastic matrix
A governing the process, that is, . Hence A should have the eigenvalue 1, and x should be a corresponding
eigenvector. This is of practical interest because it shows the long-term tendency of the development modeled
by the process.

In that example,

Hence has the eigenvalue 1, and the same is true for A by Theorem 3 in Sec. 8.1. An eigenvector x of A
for is obtained from

Taking , we get from and then from This
gives It means that in the long run, the ratio Commercial:Industrial:Residential will approach
2:6:1, provided that the probabilities given by A remain (about) the same. (We switched to ordinary fractions
to avoid rounding errors.)

E X A M P L E  3 Eigenvalue Problems Arising from Population Models. Leslie Model

The Leslie model describes age-specified population growth, as follows. Let the oldest age attained by the
females in some animal population be 9 years. Divide the population into three age classes of 3 years each. Let
the “Leslie matrix” be

(5)

where is the average number of daughters born to a single female during the time she is in age class k, and
is the fraction of females in age class that will survive and pass into class j. (a) What is the

number of females in each class after 3, 6, 9 years if each class initially consists of 400 females? (b) For what initial
distribution will the number of females in each class change by the same proportion? What is this rate of change?

j � 1lj, j�1( j � 2, 3)
l1k

L � [ljk] � D0 2.3 0.4

0.6 0 0

0 0.3 0

T

�

x � [2 6 1]T.
�3x1>10 � x2>10 � 0.x1 � 2�x2>30 � x3>5 � 0x2 � 6x3 � 1

A � I � D�0.3 0.1 0

0.2 �0.1 0.2

0.1 0 �0.2

T ,   row-reduced to   D� 3
10

1
10 0

0 � 1
30

1
5

0 0 0

T .
l � 1

AT

A � D0.7 0.1 0

0.2 0.9 0.2

0.1 0 0.8

T .   For the transpose,   D0.7 0.2 0.1

0.1 0.9 0

0 0.2 0.8

T D11
1

T � D11
1

T .

Ax � x
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332 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

Solution. (a) Initially, After 3 years,

Similarly, after 6 years the number of females in each class is given by and
after 9 years we have 

(b) Proportional change means that we are looking for a distribution vector x such that , where is
the rate of change (growth if decrease if ). The characteristic equation is (develop the characteristic
determinant by the first column)

A positive root is found to be (for instance, by Newton’s method, Sec. 19.2) A corresponding eigenvector
x can be determined from the characteristic matrix

where is chosen, then follows from and from
To get an initial population of 1200 as before, we multiply x by
Answer: Proportional growth of the numbers of females in the three classes

will occur if the initial values are 738, 369, 92 in classes 1, 2, 3, respectively. The growth rate will be 1.2 per
3 years.

E X A M P L E  4 Vibrating System of Two Masses on Two Springs (Fig. 161)

Mass–spring systems involving several masses and springs can be treated as eigenvalue problems. For instance,
the mechanical system in Fig. 161 is governed by the system of ODEs

(6)

where and are the displacements of the masses from rest, as shown in the figure, and primes denote
derivatives with respect to time t. In vector form, this becomes

(7)

Fig. 161. Masses on springs in Example 4

k
1 

= 3

k
2 

= 2 (Net change in
 spring length
  = y

2 
– y

1
)

System in
motion

System in
static

equilibrium 

m
1 

= 1(y
1 

= 0)

(y
2 

= 0) m
2 

= 1

y
1

y
2

y
2

y
1

ys � c y1s

y2s
d � Ay � c�5 2

2 �2
d c y1

y2

d .

y2y1

y1s � �3y1 � 2(y1 � y2) � �5y1 � 2y2

y2s � �2(y2 � y1) � 2y1 � 2y2

�

1200>(1 � 0.5 � 0.125) � 738.
�1.2x1 � 2.3x2 � 0.4x3 � 0.

x1 � 10.3x2 � 1.2x3 � 0,x2 � 0.5x3 � 0.125

A � 1.2I � D�1.2 2.3 0.4

0.6 �1.2 0

0 0.3 �1.2

T ,   say,   x � D 1

0.5

0.125

T
l � 1.2.

det (L � lI) � �l3 � 0.6(�2.3l � 0.3 # 0.4) � �l3 � 1.38l � 0.072 � 0.

l � 1l 	 1,
lLx � lx

x(9)
T � (Lx(6))

T � [1519.2 360 194.4].
x(6)

T � (Lx(3))
T � [600 648 72],

x(3) � Lx(0) � D0 2.3 0.4

0.6 0 0

0 0.3 0

T D400

400

400

T � D1080

240

120

T .
x(0)

T � [400 400 400].
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1–6 ELASTIC DEFORMATIONS
Given A in a deformation find the principal
directions and corresponding factors of extension or
contraction. Show the details.

1. 2.

3. 4.

5. 6. c1.25 0.75

0.75 1.25
dc1 1

2

1
2 1

d
c5 2

2 13
dc 7 16

16 2
d

c 2.0 0.4

0.4 2.0
dc3.0 1.5

1.5 3.0
d

y � Ax,

7–9 MARKOV PROCESSES
Find the limit state of the Markov process modeled by the
given matrix. Show the details.

7.

8. 9. D0.6 0.1 0.2

0.4 0.1 0.4

0 0.8 0.4

TD0.4 0.3 0.3

0.3 0.6 0.1

0.3 0.1 0.6

T
c0.2 0.5

0.8 0.5
d

P R O B L E M  S E T  8 . 2

We try a vector solution of the form

(8)

This is suggested by a mechanical system of a single mass on a spring (Sec. 2.4), whose motion is given by
exponential functions (and sines and cosines). Substitution into (7) gives

Dividing by and writing we see that our mechanical system leads to the eigenvalue problem

(9) where 

From Example 1 in Sec. 8.1 we see that A has the eigenvalues and Consequently,
and respectively. Corresponding eigenvectors are

(10)

From (8) we thus obtain the four complex solutions [see (10), Sec. 2.2]

By addition and subtraction (see Sec. 2.2) we get the four real solutions

A general solution is obtained by taking a linear combination of these,

with arbitrary constants (to which values can be assigned by prescribing initial displacement and
initial velocity of each of the two masses). By (10), the components of y are

These functions describe harmonic oscillations of the two masses. Physically, this had to be expected because
we have neglected damping. �

y2 � 2a1 cos t � 2b1 sin t � a2 cos 16 t � b2 sin 16 t.

y1 � a1 cos t � b1 sin t � 2a2 cos 16 t � 2b2 sin 16 t

a1, b1, a2, b2

y � x1 (a1 cos t � b1 sin t) � x2  (a2 cos 16 t � b2 sin 16 t)

x1 cos t,  x1 sin t,  x2 cos 16 t,  x2 sin 16 t.

 x2e
i26t � x2 (cos 16 t 
 i sin 16 t).

 x1e
it � x1 (cos t 
 i sin t),

x1 � c1
2
d  and  x2 � c 2

�1
d .

1�6 � 
i16,v � 
1�1 � 
i
l2 � �6.l1 � �1

l � v2.Ax � lx

v2 � l,evt

v2xevt � Axevt.

y � xevt.
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1WASSILY LEONTIEF (1906–1999). American economist at New York University. For his input–output
analysis he was awarded the Nobel Prize in 1973.

10–12 AGE-SPECIFIC POPULATION
Find the growth rate in the Leslie model (see Example 3)
with the matrix as given. Show the details.

10. 11.

12.

13–15 LEONTIEF MODELS1

13. Leontief input–output model. Suppose that three
industries are interrelated so that their outputs are used
as inputs by themselves, according to the 
consumption matrix

where is the fraction of the output of industry k
consumed (purchased) by industry j. Let be the price
charged by industry j for its total output. A problem is
to find prices so that for each industry, total
expenditures equal total income. Show that this leads
to , where , and find a
solution p with nonnegative 

14. Show that a consumption matrix as considered in Prob.
13 must have column sums 1 and always has the
eigenvalue 1.

15. Open Leontief input–output model. If not the whole
output but only a portion of it is consumed by the

p1, p2, p3.
p � [p1 p2 p3]TAp � p

pj

ajk

A � [ajk] � D0.1 0.5 0

0.8 0 0.4

0.1 0.5 0.6

T
3 � 3

E0 3.0 2.0 2.0

0.5 0 0 0

0 0.5 0 0

0 0 0.1 0

U
D0 3.45 0.60

0.90 0 0

0 0.45 0

TD0 9.0 5.0

0.4 0 0

0 0.4 0

T
industries themselves, then instead of (as in Prob.
13), we have , where 
is produced, Ax is consumed by the industries, and, thus,
y is the net production available for other consumers.
Find for what production x a given demand vector

can be achieved if the consump-
tion matrix is

16–20 GENERAL PROPERTIES OF EIGENVALUE
PROBLEMS

Let be an matrix with (not necessarily
distinct) eigenvalues Show.

16. Trace. The sum of the main diagonal entries, called
the trace of A, equals the sum of the eigenvalues of A.

17. “Spectral shift.” has the eigenvalues
and the same eigenvectors as A.

18. Scalar multiples, powers. kA has the eigenvalues
has the eigenvalues

. The eigenvectors are those of A.

19. Spectral mapping theorem. The “polynomial
matrix”

has the eigenvalues

where , and the same eigenvectors as A.

20. Perron’s theorem. A Leslie matrix L with positive
has a positive eigenvalue. (This is a

special case of the Perron–Frobenius theorem in Sec.
20.7, which is difficult to prove in its general form.)

l12, l13, l21, l32

j � 1, Á , n

p (lj) � kmlj
m � km�1lj

m�1 � Á � k1lj � k0

p (A) � kmAm � km�1Am�1 � Á � k1A � k0I

l1
m, Á , ln

m
kl1, Á , kln. Am(m � 1, 2, Á )

l1 � k, Á , ln � k
A � kI

l1, Á , ln.
n � nA � [ajk]

A � D0.1 0.4 0.2

0.5 0 0.1

0.1 0.4 0.4

T .
y � [0.1 0.3 0.1]T

x � [x1 x2 x3]Tx � Ax � y
Ax � x

8.3 Symmetric, Skew-Symmetric, 
and Orthogonal Matrices

We consider three classes of real square matrices that, because of their remarkable
properties, occur quite frequently in applications. The first two matrices have already been
mentioned in Sec. 7.2. The goal of Sec. 8.3 is to show their remarkable properties.
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D E F I N I T I O N S Symmetric, Skew-Symmetric, and Orthogonal Matrices

A real square matrix is called
symmetric if transposition leaves it unchanged,

(1) thus

skew-symmetric if transposition gives the negative of A,

(2) , thus

orthogonal if transposition gives the inverse of A,

(3)

E X A M P L E  1 Symmetric, Skew-Symmetric, and Orthogonal Matrices

The matrices

are symmetric, skew-symmetric, and orthogonal, respectively, as you should verify. Every skew-symmetric
matrix has all main diagonal entries zero. (Can you prove this?)

Any real square matrix A may be written as the sum of a symmetric matrix R and a skew-
symmetric matrix S, where

(4) and

E X A M P L E  2 Illustration of Formula (4)

T H E O R E M  1 Eigenvalues of Symmetric and Skew-Symmetric Matrices

(a) The eigenvalues of a symmetric matrix are real.

(b) The eigenvalues of a skew-symmetric matrix are pure imaginary or zero.

This basic theorem (and an extension of it) will be proved in Sec. 8.5.

�A � D9 5 2

2 3 �8

5 4 3

T � R � S � D9.0 3.5 3.5

3.5 3.0 �2.0

3.5 �2.0 3.0

T � D 0 1.5 �1.5

�1.5 0 �6.0

1.5 6.0 0

T

S � 1
2 (A � AT).R � 1

2 (A � AT)

�

D�3 1 5

1 0 �2

5 �2 4

T ,  D 0 9 �12

�9 0 20

12 �20 0

T ,  D 2
3

1
3

2
3

�2
3

2
3

1
3

1
3

2
3 �2

3

T

AT � A�1.

akj � �ajk,AT � �A

akj � ajk,AT � A,

A � [ajk]
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E X A M P L E  3 Eigenvalues of Symmetric and Skew-Symmetric Matrices

The matrices in (1) and (7) of Sec. 8.2 are symmetric and have real eigenvalues. The skew-symmetric matrix
in Example 1 has the eigenvalues 0, �25 i, and 25 i. (Verify this.) The following matrix has the real eigenvalues
1 and 5 but is not symmetric. Does this contradict Theorem 1?

Orthogonal Transformations and Orthogonal Matrices
Orthogonal transformations are transformations

(5) where A is an orthogonal matrix.

With each vector x in such a transformation assigns a vector y in . For instance,
the plane rotation through an angle 

(6)

is an orthogonal transformation. It can be shown that any orthogonal transformation in
the plane or in three-dimensional space is a rotation (possibly combined with a reflection
in a straight line or a plane, respectively).

The main reason for the importance of orthogonal matrices is as follows.

T H E O R E M 2 Invariance of Inner Product

An orthogonal transformation preserves the value of the inner product of vectors
a and b in , defined by

(7)

That is, for any a and b in , orthogonal matrix A, and 
we have

Hence the transformation also preserves the length or norm of any vector a in
given by

(8)

P R O O F Let A be orthogonal. Let and . We must show that Now
by (10d) in Sec. 7.2 and by (3). Hence

(9)

From this the invariance of follows if we set �b � a.� a �

u • v � uTv � (Aa)TAb � aTATAb � aTIb � aTb � a • b.

ATA � A�1A � I(Aa)T � aTAT
u • v � a • b.v � Abu � Aa

� a � � 1a • a � 2aTa.

Rn

u • v � a • b.
u � Aa, v � Abn � nRn

a • b � aTb � [a1 
Á

 an] Db1

.

.

.

bn

T .
Rn

y � c y1

y2

d � c cos u �sin u

sin u cos u
d c x1

x2

d
u

RnRn

y � Ax

�c3 4

1 3
d

336 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems
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SEC. 8.3 Symmetric, Skew-Symmetric, and Orthogonal Matrices 337

Orthogonal matrices have further interesting properties as follows.

T H E O R E M 3 Orthonormality of Column and Row Vectors

A real square matrix is orthogonal if and only if its column vectors (and
also its row vectors) form an orthonormal system, that is,

(10)

P R O O F (a) Let A be orthogonal. Then . In terms of column vectors 

(11)

The last equality implies (10), by the definition of the unit matrix I. From (3) it
follows that the inverse of an orthogonal matrix is orthogonal (see CAS Experiment 12).
Now the column vectors of are the row vectors of A. Hence the row vectors
of A also form an orthonormal system.
(b) Conversely, if the column vectors of A satisfy (10), the off-diagonal entries in (11)
must be 0 and the diagonal entries 1. Hence , as (11) shows. Similarly, 
This implies because also and the inverse is unique. Hence
A is orthogonal. Similarly when the row vectors of A form an orthonormal system, by
what has been said at the end of part (a).

T H E O R E M  4 Determinant of an Orthogonal Matrix

The determinant of an orthogonal matrix has the value or

P R O O F From (Sec. 7.8, Theorem 4) and (Sec. 7.7,
Theorem 2d), we get for an orthogonal matrix

E X A M P L E  4 Illustration of Theorems 3 and 4

The last matrix in Example 1 and the matrix in (6) illustrate Theorems 3 and 4 because their determinants are 
and , as you should verify.

T H E O R E M  5 Eigenvalues of an Orthogonal Matrix

The eigenvalues of an orthogonal matrix A are real or complex conjugates in pairs
and have absolute value 1.

��1�1

�1 � det  I � det (AA�1) � det (AAT) � det A det AT � (det A)2.

det  AT � det  Adet  AB � det  A det B

�1.�1

�

A�1A � AA�1 � IAT � A�1
AAT � I.ATA � I

A�1(�AT)

n � n

I � A�1A � ATA � Da1
T

.

.

.

an
T

T [a1
Á an] � Da1

Ta1 a1
Ta2 � �� a1

Tan

� � � � � �

an
Ta1 an

Ta2 � �� an
Tan

T .
a1, Á , an,A�1A � ATA � I

aj • ak � aj
Tak � e 0 if j � k

1 if j � k.

a1, Á , an
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P R O O F The first part of the statement holds for any real matrix A because its characteristic
polynomial has real coefficients, so that its zeros (the eigenvalues of A) must be as 
indicated. The claim that will be proved in Sec. 8.5.

E X A M P L E  5 Eigenvalues of an Orthogonal Matrix

The orthogonal matrix in Example 1 has the characteristic equation

Now one of the eigenvalues must be real (why?), hence or . Trying, we find . Division by 
gives and the two eigenvalues and , which have absolute
value 1. Verify all of this.

Looking back at this section, you will find that the numerous basic results it contains have
relatively short, straightforward proofs. This is typical of large portions of matrix
eigenvalue theory.

�
(5 � i111)>6(5 � i111)>6�(l2 � 5l>3 � 1) � 0

l � 1�1�1�1

�l3 � 2
3 l2 � 2

3 l � 1 � 0.

�ƒl ƒ � 1

338 CHAP. 8 Linear Algebra: Matrix Eigenvalue Problems

1–10 SPECTRUM
Are the following matrices symmetric, skew-symmetric, or
orthogonal? Find the spectrum of each, thereby illustrating
Theorems 1 and 5. Show your work in detail.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11. WRITING PROJECT. Section Summary. Sum-
marize the main concepts and facts in this section,
giving illustrative examples of your own.

12. CAS EXPERIMENT. Orthogonal Matrices.

(a) Products. Inverse. Prove that the product of two
orthogonal matrices is orthogonal, and so is the inverse
of an orthogonal matrix. What does this mean in terms
of rotations?

D 4
9

8
9

1
9

�7
9

4
9 �4

9

�4
9

1
9

8
9

TD 0 0 1

0 1 0

�1 0 0

T
D1 0 0

0 cos u �sin u

0 sin u cos u

TD 0 9 �12

�9 0 20

12 �20 0

T
Da k k

k a k

k k a

TD6 0 0

0 2 �2

0 �2 5

T
c cos u �sin u

sin u cos u
dc 2 8

�8 2
d

c a b

�b a
dc 0.8 0.6

�0.6 0.8
d

(b) Rotation. Show that (6) is an orthogonal trans-
formation. Verify that it satisfies Theorem 3. Find the
inverse transformation.

(c) Powers. Write a program for computing powers
of a matrix A and their

spectra. Apply it to the matrix in Prob. 1 (call it A). To
what rotation does A correspond? Do the eigenvalues
of have a limit as ?

(d) Compute the eigenvalues of where A is
the matrix in Prob. 1. Plot them as points. What is their
limit? Along what kind of curve do these points
approach the limit?

(e) Find A such that is a counterclockwise
rotation through in the plane.

13–20 GENERAL PROPERTIES

13. Verification. Verify the statements in Example 1.

14. Verify the statements in Examples 3 and 4.

15. Sum. Are the eigenvalues of sums of the
eigenvalues of A and of B?

16. Orthogonality. Prove that eigenvectors of a symmetric
matrix corresponding to different eigenvalues are
orthogonal. Give examples.

17. Skew-symmetric matrix. Show that the inverse of a
skew-symmetric matrix is skew-symmetric.

18. Do there exist nonsingular skew-symmetric 
matrices with odd n?

19. Orthogonal matrix. Do there exist skew-symmetric
orthogonal matrices?

20. Symmetric matrix. Do there exist nondiagonal
symmetric matrices that are orthogonal? 3 � 3

3 � 3

n � n

A � B

30°
y � Ax

(0.9A)m,

m : �Am

2 � 2Am (m � 1, 2, Á )

P R O B L E M  S E T  8 . 3
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