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8.4 Eigenbases. Diagonalization. 
Quadratic Forms

So far we have emphasized properties of eigenvalues. We now turn to general properties
of eigenvectors. Eigenvectors of an matrix A may (or may not!) form a basis for

If we are interested in a transformation such an “eigenbasis” (basis of
eigenvectors)—if it exists—is of great advantage because then we can represent any x in

uniquely as a linear combination of the eigenvectors say,

And, denoting the corresponding (not necessarily distinct) eigenvalues of the matrix A by
we have so that we simply obtain

(1)

This shows that we have decomposed the complicated action of A on an arbitrary vector
x into a sum of simple actions (multiplication by scalars) on the eigenvectors of A. This
is the point of an eigenbasis.

Now if the n eigenvalues are all different, we do obtain a basis:

T H E O R E M  1 Basis of Eigenvectors

If an matrix A has n distinct eigenvalues, then A has a basis of eigenvectors
for

P R O O F All we have to show is that are linearly independent. Suppose they are not. Let
r be the largest integer such that is a linearly independent set. Then 
and the set is linearly dependent. Thus there are scalars 
not all zero, such that

(2)

(see Sec. 7.4). Multiplying both sides by A and using we obtain

(3)

To get rid of the last term, we subtract times (2) from this, obtaining

Here since is linearly independent.
Hence , since all the eigenvalues are distinct. But with this, (2) reduces to

hence since (an eigenvector!). This contradicts the fact
that not all scalars in (2) are zero. Hence the conclusion of the theorem must hold. �

xr�1 � 0cr�1 � 0,cr�1xr�1 � 0,
c1 � Á � cr � 0

{x1, Á , x r}c1(l1 � lr�1) � 0, Á , cr(lr � lr�1) � 0

c1(l1 � lr�1)x1 � Á � cr(lr � lr�1)xr � 0.

lr�1

A(c1x1 � Á � cr�1xr�1) � c1l1x1 � Á � cr�1lr�1xr�1 � A0 � 0.

Axj � ljxj,

c1x1 � Á � cr�1xr�1 � 0

c1, Á , cr�1,{x1, Á , xr, xr�1}
r � n{x1, Á , xr}

x1, Á , xn

Rn.x1, Á , xn

n � n

 � c1l1x1 � Á � cnlnxn.

 � c1Ax1 � Á � cnAxn

 y � Ax � A(c1x1 � Á � cnxn)

Axj � ljxj,l1, Á , ln,

x � c1x1 � c2x2 � Á � cnxn.

x1, Á , xn,Rn

y � Ax,Rn.
n � n
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E X A M P L E  1 Eigenbasis. Nondistinct Eigenvalues. Nonexistence

The matrix has a basis of eigenvectors corresponding to the eigenvalues 

(See Example 1 in Sec. 8.2.)
Even if not all n eigenvalues are different, a matrix A may still provide an eigenbasis for . See Example 2

in Sec. 8.1, where 
On the other hand, A may not have enough linearly independent eigenvectors to make up a basis. For

instance, A in Example 3 of Sec. 8.1 is

and has only one eigenvector , arbitrary).

Actually, eigenbases exist under much more general conditions than those in Theorem 1.
An important case is the following.

T H E O R E M  2 Symmetric Matrices

A symmetric matrix has an orthonormal basis of eigenvectors for

For a proof (which is involved) see Ref. [B3], vol. 1, pp. 270–272.

E X A M P L E  2 Orthonormal Basis of Eigenvectors

The first matrix in Example 1 is symmetric, and an orthonormal basis of eigenvectors is 

Similarity of Matrices. Diagonalization
Eigenbases also play a role in reducing a matrix A to a diagonal matrix whose entries are
the eigenvalues of A. This is done by a “similarity transformation,” which is defined as
follows (and will have various applications in numerics in Chap. 20).

D E F I N I T I O N Similar Matrices. Similarity Transformation

An matrix is called similar to an matrix A if

(4)

for some (nonsingular!) matrix P. This transformation, which gives from
A, is called a similarity transformation.

The key property of this transformation is that it preserves the eigenvalues of A:

T H E O R E M  3 Eigenvalues and Eigenvectors of Similar Matrices

If is similar to A, then has the same eigenvalues as A.
Furthermore, if x is an eigenvector of A, then is an eigenvector of

corresponding to the same eigenvalue.
Ây � P�1x

ÂÂ

Ân � n

Â � P�1AP

n � nÂn � n

�[1>12 �1>124T.
31>12 1>124T,

Rn.

�(k � 0c k
0
dA � c0 1

0 0
d

n � 3.
Rn

l2 � 2.

l1 � 8,c1
1
d , c 1

�1
dA � c5 3

3 5
d
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SEC. 8.4 Eigenbases. Diagonalization. Quadratic Forms 341

P R O O F From an eigenvalue, we get Now By
this identity trick the equation gives

Hence is an eigenvalue of and a corresponding eigenvector. Indeed, 
because would give , contradicting 

E X A M P L E  3 Eigenvalues and Vectors of Similar Matrices

Let, and

Then

Here was obtained from (4*) in Sec. 7.8 with . We see that has the eigenvalues 
The characteristic equation of A is It has the roots (the eigenvalues
of A) , confirming the first part of Theorem 3.

We confirm the second part. From the first component of we have . For
this gives say, For it gives , say, . In

Theorem 3 we thus have

Indeed, these are eigenvectors of the diagonal matrix 
Perhaps we see that and are the columns of P. This suggests the general method of transforming a

matrix A to diagonal form D by using , the matrix with eigenvectors as columns.

By a suitable similarity transformation we can now transform a matrix A to a diagonal
matrix D whose diagonal entries are the eigenvalues of A:

T H E O R E M  4 Diagonalization of a Matrix

If an matrix A has a basis of eigenvectors, then

(5)

is diagonal, with the eigenvalues of A as the entries on the main diagonal. Here X
is the matrix with these eigenvectors as column vectors. Also, 

(5*) .(m � 2, 3, Á )Dm � X�1AmX

D � X�1AX

n � n

�P � X
x2x1

Â.

y1 � P�1x1 � c 4 �3

�1 1
d c1

1
d � c1

0
d ,    y2 � P�1x2 � c 4 �3

�1 1
d c3

4
d � c0

1
d .

x2 � 33 44T4x1 � 3x2 � 0l � 2x1 � 31 14T.3x1 � 3x2 � 0,l � 3
(6 � l)x1 � 3x2 � 0(A � lI)x � 0

l1 � 3, l2 � 2
(6 � l)(�1 � l) � 12 � l2 � 5l � 6 � 0.

l1 � 3, l2 � 2.Âdet P � 1P�1

Â � c 4 �3

�1 1
d c6 �3

4 �1
d c1 3

1 4
d � c3 0

0 2
d .

P � c1 3

1 4
d .A � c6 �3

4 �1
d

�x � 0.x � Ix � PP�1x � P0 � 0P�1x � 0
P�1x � 0P�1xÂl

P�1Ax � P�1AIx � P�1APP�1x � (P�1AP)P�1x � Â(P�1x) � lP�1x.

P�1Ax � lP�1x
I � PP�1.P�1Ax � lP�1x.x � 0)(lAx � lx
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P R O O F Let be a basis of eigenvectors of A for . Let the corresponding eigenvalues
of A be , respectively, so that . Then

has rank n, by Theorem 3 in Sec. 7.4. Hence exists by Theorem 1
in Sec. 7.8. We claim that

(6)

where D is the diagonal matrix as in (5). The fourth equality in (6) follows by direct
calculation. (Try it for and then for general n.) The third equality uses 
The second equality results if we note that the first column of AX is A times the first
column of X, which is , and so on. For instance, when and we write

, , we have

Column 1 Column 2

If we multiply (6) by from the left, we obtain (5). Since (5) is a similarity
transformation, Theorem 3 implies that D has the same eigenvalues as A. Equation (5*)
follows if we note that

etc.

E X A M P L E  4 Diagonalization

Diagonalize

Solution. The characteristic determinant gives the characteristic equation The roots
(eigenvalues of A) are By the Gauss elimination applied to with

we find eigenvectors and then by the Gauss–Jordan elimination (Sec. 7.8, Example 1). The
results are

Calculating AX and multiplying by from the left, we thus obtain

�D � X�1AX � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T  D�3 �4 0

9 4 0

�3 �12 0

T � D3 0 0

0 �4 0

0 0 0

T .
X�1

D�1

3

�1

T , D 1

�1

3

T , D21
4

T ,  X � D�1 1 2

3 �1 1

�1 3 4

T ,  X�1 � D�0.7 0.2 0.3

�1.3 �0.2 0.7

0.8 0.2 �0.2

T .
X�1l � l1, l2, l3

(A � lI)x � 0l1 � 3, l2 � �4, l3 � 0.
�l3 � l2 � 12l � 0.

A � D 7.3 0.2 �3.7

�11.5 1.0 5.5

17.7 1.8 �9.3

T .

�D2 � DD � (X�1AX)(X�1AX) � X�1A(XX�1)AX � X�1AAX � X�1A2X,

X�1

 � ca11x11 � a12x21  a11x12 � a12x22

a21x11 � a22x21 a21x12 � a22x22

d � 3Ax1 Ax24.

 AX � A3x1 x24 � ca11 a12

a21 a22

d  c x11 x12

x21 x22

d
x2 � 3x12 x224x1 � 3x11 x214

n � 2x1

Axk � lkxk.n � 2

Ax � A3x1 
Á

 xn4 � 3Ax1 
Á

 Axn4 � 3l1x1 
Á

 lnxn4 � XD

X�1X � 3x1
Á  xn4

Ax1 � l1x1, Á , Axn � lnxnl1, Á , ln

Rnx1, Á , xn
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SEC. 8.4 Eigenbases. Diagonalization. Quadratic Forms 343

Quadratic Forms. Transformation to Principal Axes
By definition, a quadratic form Q in the components of a vector x is a sum
of terms, namely, 

(7)

is called the coefficient matrix of the form. We may assume that A is
symmetric, because we can take off-diagonal terms together in pairs and write the result
as a sum of two equal terms; see the following example.

E X A M P L E  5 Quadratic Form. Symmetric Coefficient Matrix

Let

Here From the corresponding symmetric matrix , where 
thus , we get the same result; indeed, 

Quadratic forms occur in physics and geometry, for instance, in connection with conic
sections (ellipses , etc.) and quadratic surfaces (cones, etc.). Their
transformation to principal axes is an important practical task related to the diagonalization
of matrices, as follows.

By Theorem 2, the symmetric coefficient matrix A of (7) has an orthonormal basis of
eigenvectors. Hence if we take these as column vectors, we obtain a matrix X that is
orthogonal, so that . From (5) we thus have . Substitution
into (7) gives

(8)

If we set , then, since , we have and thus obtain

(9)

Furthermore, in (8) we have and , so that Q becomes simply

(10) Q � yTDy � l1y1
2 � l2y2

2 � Á � lnyn
2 .

XTx � yxTX � (XTx)T � yT

x � Xy.

X�1x � yXT � X�1XTx � y

Q � xTXDXTx.

A � XDX�1 � XDXTX�1 � XT

x1
2>a2 � x2

2>b2 � 1

�xTCx � 3x1 x24 c3 5

5 2
d  c x1

x2

d � 3x1
2 � 5x1x2 � 5x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

c11 � 3, c12 � c21 � 5, c22 � 2
cjk � 1

2 (ajk � akj),C � [cjk44 � 6 � 10 � 5 � 5.

xTAx � 3x1 x24 c3 4

6 2
d  c x1

x2

d � 3x1
2 � 4x1x2 � 6x2x1 � 2x2

2 � 3x1
2 � 10x1x2 � 2x2

2.

A � 3ajk4

 � an1xnx1 � an2xnx2 � Á
 � annxn

2 .

 � # # # # # # # # # # # # # # # # # # # # # # # # # # #

 � a21x2x1  � a22x2
2  � Á  � a2nx2xn

�  a11x1
2  � a12x1x2  � Á

 � a1nx1xn

 Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk

n2
x1, Á , xn
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This proves the following basic theorem.

T H E O R E M  5 Principal Axes Theorem

The substitution (9) transforms a quadratic form

to the principal axes form or canonical form (10), where are the (not
necessarily distinct) eigenvalues of the (symmetric!) matrix A, and X is an
orthogonal matrix with corresponding eigenvectors , respectively, as
column vectors.

E X A M P L E  6 Transformation to Principal Axes. Conic Sections

Find out what type of conic section the following quadratic form represents and transform it to principal axes:

Solution. We have , where

,

This gives the characteristic equation . It has the roots . Hence (10)
becomes

We see that represents the ellipse that is, 

If we want to know the direction of the principal axes in the -coordinates, we have to determine normalized
eigenvectors from with and and then use (9). We get

and

hence

,

This is a rotation. Our results agree with those in Sec. 8.2, Example 1, except for the notations. See also
Fig. 160 in that example. �

45°

x1 � y1>12 � y2>12

x2 � y1>12 � y2>12.
x � Xy � c1>12 �1>12

1>12 1>12
d  c y1

y2

d

c�1>12

1>12
d ,c1>12

1>12
d

l � l2 � 32l � l1 � 2(A � lI)x � 0
x1x2

y1
2

82
 �

y2
2

22
 � 1.

2y1
2 � 32y2

2 � 128,Q � 128

Q � 2y1
2 � 32y2

2.

l1 � 2, l2 � 32(17 � l)2 � 152 � 0

x � c x1

x2

d .A � c 17 �15

�15 17
d

Q � xTAx

Q � 17x1
2 � 30x1x2 � 17x2

2 � 128.

x1, Á , xn

l1, Á , ln

Q � xTAx � a

n

j�1

 a

n

k�1

ajkx jxk  (akj � ajk)
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1–5 SIMILAR MATRICES HAVE EQUAL
EIGENVALUES

Verify this for A and If y is an eigenvector
of P, show that are eigenvectors of A. Show the
details of your work.

1.

2.

3.

4.

5.

6. PROJECT. Similarity of Matrices. Similarity is
basic, for instance, in designing numeric methods.

(a) Trace. By definition, the trace of an matrix
is the sum of the diagonal entries, 

trace 

Show that the trace equals the sum of the eigenvalues,
each counted as often as its algebraic multiplicity
indicates. Illustrate this with the matrices A in Probs.
1, 3, and 5.

(b) Trace of product. Let be . Show
that similar matrices have equal traces, by first proving

trace 

(c) Find a relationship between in (4) and

(d) Diagonalization. What can you do in (5) if you
want to change the order of the eigenvalues in D, for
instance, interchange and ?

7. No basis. Find further and matrices
without eigenbasis.

3 � 32 � 2

d22 � l2d11 � l1

Â � PAP�1.
Â

AB � a

n

i�1

 a

n

l�1

ailbli � trace BA.

n � nB � 3bjk4

A � a11 � a22 � Á � ann.

A � 3ajk4
n � n

A � D�5

3

�5

0

4

0

15

�9

15

T ,   P � D01
0

1

0

0

0

0

1

T
l1 � 3

A � D00
1

0

3

0

2

2

1

T ,  P � D20
3

0

1

0

3

0

5

T ,
A � c8

2

�4

2
d  ,   P � c 0.28

�0.96

0.96

0.28
S

A � c1
2

0

�1
d  ,   P � c 7

10

�5

�7
d

A � c3
4

4

�3
d  ,   P � c�4

3

2

�1
d

x � Py
A � P�1AP.

8. Orthonormal basis. Illustrate Theorem 2 with further
examples.

9–16 DIAGONALIZATION OF MATRICES
Find an eigenbasis (a basis of eigenvectors) and diagonalize.
Show the details.

9. 10.

11. 12.

13.

14.

15.

16.

17–23 PRINCIPAL AXES. CONIC SECTIONS
What kind of conic section (or pair of straight lines) is given
by the quadratic form? Transform it to principal axes.
Express in terms of the new coordinate
vector , as in Example 6.

17.

18.

19.

20.

21.

22.

23. �11x1
2 � 84x1x2 � 24x2

2 � 156

4x1
2 � 12x1x2 � 13x2

2 � 16

x1
2 � 12x1x2 � x2

2 � 70

9x1
2 � 6x1x2 � x2

2 � 10

3x1
2 � 22x1x2 � 3x2

2 � 0

3x1
2 � 8x1x2 � 3x2

2 � 10

7x1
2 � 6x1x2 � 7x2

2 � 200

yT � 3y1 y24
xT � 3x1 x24

D11
0

1

1

0

0

0

�4

T
D43
3

3

6

1

3

1

6

T ,   l1 � 10

D �5

�9

�12

�6

�8

�12

6

12

16

T ,   l1 � �2

D 4

12

21

0

�2

�6

0

0

1

T
c�4.3

1.3

7.7

9.3
dc�19

�42

7

16
d

c 1
2

0

�1
dc1

2

2

4
d
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24. Definiteness. A quadratic form and its
(symmetric!) matrix A are called (a) positive definite
if for all (b) negative definite if

for all (c) indefinite if takes
both positive and negative values. (See Fig. 162.)

and A are called positive semidefinite (negative
semidefinite) if for all x.] Show
that a necessary and sufficient condition for (a), (b),
and (c) is that the eigenvalues of A are (a) all positive,
(b) all negative, and (c) both positive and negative.

Hint. Use Theorem 5.

25. Definiteness. A necessary and sufficient condition for
positive definiteness of a quadratic form 
with symmetric matrix A is that all the principal minors
are positive (see Ref. [B3], vol. 1, p. 306), that is, 

Show that the form in Prob. 22 is positive definite,
whereas that in Prob. 23 is indefinite.

3  a11

a12

a13

a12

a22

a23

a13

a23

a33

 3 	 0,  Á ,  det A 	 0.

a11 	 0,   2  a11

a12

a12

a22

 2 	 0,

Q (x) � xTAx

Q (x) � 0 (Q (x) � 0)
3Q (x)

Q (x)x � 0,Q (x) � 0
x � 0,Q (x) 	 0

Q (x) � xTAx

Q(x)

Q(x)

x1
x2

(a) Positive definite form

Q(x)

(c) Indefinite form

x1

x2

(b) Negative definite form

x1

x2

Fig. 162. Quadratic forms in two variables (Problem 24)

8.5 Complex Matrices and Forms. Optional
The three classes of matrices in Sec. 8.3 have complex counterparts which are of practical
interest in certain applications, for instance, in quantum mechanics. This is mainly because
of their spectra as shown in Theorem 1 in this section. The second topic is about extending
quadratic forms of Sec. 8.4 to complex numbers. (The reader who wants to brush up on
complex numbers may want to consult Sec. 13.1.)

Notations

is obtained from by replacing each entry 
real) with its complex conjugate Also, is the transpose

of hence the conjugate transpose of A.

E X A M P L E  1 Notations

If then and �A 
T

� c3 � 4i

1 � i

6

2 � 5i
d  .A � c3 � 4i

6

1 � i

2 � 5i
dA � c3 � 4i

6

1 � i

2 � 5i
d  ,

A,
A 

T
� 3akj4ajk � a � ib.(a, b

ajk � a � ibA � 3ajk4A � 3ajk4
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